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Das Herausgebergremium hatte sich überlegt, dass es grundsätzlich wünschenswert
sei, „Themenhefte“ zu gestalten. Denn auf diese Weise könne eine Thematik aus
verschiedenen Perspektiven beleuchtet werden und es ergebe sich ein unmittelbarerer
Eindruck von deren Vielseitigkeit und Vielschichtigkeit.

In diesem – und aller Voraussicht nach auch im nächsten – Heft ist der Jahresbe-
richt nun in der glücklichen Situation, dass die druckfertig vorliegenden Manuskripte
die Gestaltung eines derartigen „Themenheftes“ gestatten. Im vorliegenden Heft fin-
den Sie zwei Übersichtsartikel zu dem Themenkomplex „Partielle Differentialglei-
chungen“, der von dem einen Beitrag aus der Perspektive „geometrische Eigenschaf-
ten von Lösungen“ und von dem anderen Beitrag aus der Perspektive „Regularität
und Abschätzungen von Lösungen“ betrachtet wird.

Stellen Sie sich z.B. die möglichen Eigenschwingungen einer eingespannten kreis-
förmigen Membran (→ Pauke) vor. Hier kann man das entsprechende Eigenwert-
problem (für das Dirichletproblem der Laplacegleichung) explizit analysieren: Das
räumliche Profil der Grundschwingung ist positiv und radialsymmetrisch, während
man bei der ersten Oberschwingung zwei Bereiche entgegengesetzten Vorzeichens
und lediglich noch Axialsymmetrie beobachtet. Die weiteren Oberschwingungen
werden nun immer komplizierter und weisen sukzessive ein immer geringeres Maß
an Symmetrie auf. Tobias Weth stellt diese experimentellen Beobachtungen in sei-
nem Übersichtsartikel „Symmetry of solutions to variational problems for nonlinear
elliptic equations via reflection methods“ in den Kontext einer allgemeinen und glei-
chermaßen relativ elementaren Theorie in dem Sinne, dass er sich auf Reflektions-
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methoden beschränkt und lediglich auf wohletablierte analytische und topologische
Werkzeuge verweisen muss.

Um Existenz von Lösungen für Randwertprobleme bei partiellen Differential-
gleichungen zu zeigen, besteht ein typischer Zugang darin, zunächst „a priori-
Abschätzungen“ für als existent angenommene Lösungen herzuleiten. Sind diese Ab-
schätzungen hinreichend gut, so ergeben funktionalanalytische Hilfsmittel auch so-
fort Existenz. Bei linearen „elliptischen“ Gleichungen (Prototyp ist die Laplaceglei-
chung −�u = f ) heißen die grundlegenden Abschätzungen in Räumen klassisch dif-
ferenzierbarer Funktionen nach Schauder und in Räumen schwach differenzierbarer
Funktionen mit Lγ -Integralnormen nach Calderón und Zygmund. Giuseppe Mingio-
ne gibt nun einen bemerkenswerten Überblick über „Nonlinear aspects of Calderón-
Zygmund theory“. Er betrachtet eine allgemeine Klasse nichtlinearer elliptischer Dif-
ferentialgleichungen und stellt im Lγ -Kontext mittels neuer methodischer Zugänge
zahlreiche aktuelle Regularitäts- und Abschätzungsaussagen zusammen, wie man sie
vorher oft nur von linearen Problemen her kannte. Zum Einstieg in diese Thematik
lässt er die klassischen Tatsachen aus der linearen Theorie zunächst Revue passieren.

Einen Kontrapunkt zu soviel partiellen Differentialgleichungen in diesem Heft bil-
den die Buchbesprechungen. Hier werden neue Monographien unter anderem aus
der Stochastik, der Finanzmathematik und der symplektischen Geometrie vorgestellt.
Zwar sind auch hier die partiellen Differentialgleichungen mit einem Titel präsent,
der allerdings hyperbolische Gleichungen und diese zudem in zufälligen Medien zum
Gegenstand hat.
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Abstract We discuss some recent results on symmetry of solutions of nonlinear par-
tial differential equations. We focus on elliptic and degenerate elliptic boundary value
problems of second order with variational structure and the simple looking case
where the underlying domain is radially symmetric. In this setting, we study solu-
tions which are given as minimizers of constrained minimization problems or have
low Morse index, and we examine which amount of symmetry of the data is inherited
by these solutions. We highlight how the answer to this general question depends on
specific assumptions on the data. The underlying techniques collected in this survey
are elementary as they solely rely on hyperplane reflections and well known ana-
lytical and topological tools, but they yield surprisingly general results in situations
where classical methods do not apply.
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1 Introduction

It is frequently observed in nature that physical objects in low energy states have a
fairly simple shape, whereas in energetically excited states their structure becomes
more and more complex. However, observations of this type do not lead to a general
principle but rather to a rule of thumb, and some exceptions from this rule correspond
to highly interesting phenomena. As a consequence, it is important to formulate pre-
cise criteria to distinguish different levels of complexity and to check whether these
criteria provide theoretical explanations of experimental observations within suitable
mathematical models. The most natural way to distinguish simple and complex struc-
tures seems to be the analysis of their symmetries. Consider for example the classical
fixed membrane eigenvalue problem{

−�u = λu in �,

u = 0 on ∂�
(1.1)

in a planar bounded domain � ⊂ R
2. In a simplified model, the solutions u of (1.1)

describe (up to sign) the amplitude of a time-periodic oscillation of a membrane fixed
at the boundary ∂�, and the corresponding eigenvalue λ corresponds to the energy of
this oscillation. More precisely, the eigenvalues λ are exactly the critical values of the
Dirichlet energy functional u �→ 1

2

∫
�

|∇u|2 dx subject to the constraint
∫
�

u2 dx = 1
within a suitable function space (we will be more precise below). It is well known
that the eigenvalues of this problem form an unbounded increasing sequence (λk)k .
The first eigenvalue λ1 is simple, and the corresponding eigenspace is generated by
a function ϕ1 which is positive in �. The uniqueness of this eigenfunction (up to a
constant factor) implies that ϕ1 inherits all the symmetries of the underlying domain
�. In particular, in the case where � is the unit disc, ϕ1 must be radial. In fact, ϕ1

is then given explicitly as ϕ1(x) = J0(j0|x|), where J0 is the Bessel function (of the
first kind) of order zero and j0 is its first zero point, see Fig. 1 (left) below. As a
consequence, ϕ1 is Schwarz symmetric, i.e., it is radial and decreasing in the radial
variable. In a celebrated paper, Gidas, Ni and Nirenberg [49] showed in 1979 that this
kind of symmetry is shared by every positive solution of the more general semilinear
equation

−�u = f (x,u), in � (1.2)

Fig. 1 First and second Dirichlet eigenfunctions of the Laplacian in a disc
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which satisfies Dirichlet boundary conditions on ∂�, provided that � ⊂ R
n is a ball

and the nonlinearity f is locally Lipschitz in u, only depends on the radial variable
r = |x| and is nonincreasing in r . We note that equations of type (1.2) arise e.g. in
conformal geometry, plasma physics, nonlinear optics and mathematical biology (see
e.g. [31, 38, 62, 69, 80, 81]), and they have been studied extensively in the last four
decades.

The seminal result of Gidas, Ni and Nirenberg relies on the moving plane method
which has its roots in earlier work of Alexandrov [3] and Serrin [75]. Despite its
importance, this method fails to provide symmetry information for nodal (i.e., sign-
changing) solutions and, in each of the following instances, also for positive solu-
tions:

– � ⊂ R
n is an annulus or the exterior of a ball;

– f is not locally Lipschitz in u and/or increasing in |x|;
– other boundary conditions are considered instead of u = 0 on ∂�.

In fact, in these cases, solutions having a rather complicated shape have been con-
structed for suitable data, including solutions with arbitrarily many isolated local
maxima. Therefore one is led to study the symmetry problem within restricted classes
of solutions characterized by variational information. Let us explain this by going
back to the linear eigenvalue problem (1.1). Here classical results give some infor-
mation on the shape of eigenfunctions corresponding to higher eigenvalues λk > λ1.
By the well known Courant nodal domain theorem [30], every eigenfunction corre-
sponding to λk has at most k nodal domains. Moreover, the eigenfunctions inherit
part of the symmetry of the underlying domain �. In particular, assuming again that
� is the unit disk in R

2, we have an explicit representation of the corresponding
two-dimensional eigenspace corresponding to the second eigenvalue λ2. More pre-
cisely, every eigenfunction is a scalar multiple of one of the functions ϕe given by
ϕe(x) = x

|x| · e J1(j1|x|) with a unit vector e ∈ R
2, where · denotes the Euclidean in-

ner product in R
2, J1 is the Bessel function of order 1 and j1 is its first zero. Note that

the function ϕe is nonradial, but it is symmetric with respect to reflection at the line
Re ⊂ R

2, and it is decreasing in the angle θ = arccos[ x
|x| · e] for θ ∈ (0,π). These

properties can be seen as a spherical version of Schwarz symmetry along the foliation
of the underlying disc by circles. Therefore this symmetry has been called foliated
Schwarz symmetry in a large part of the literature, and we will stick to this name in
the present survey.

At first glance, it seems too optimistic to expect that variational characteristics of
solutions of the nonlinear problem (1.2) are similarly closely related to their geomet-
ric properties as in the case of eigenfunctions of the fixed membrane problem. Let
us quickly recall the variational structure of (1.2). Assuming that f satisfies appro-
priate growth and regularity assumptions, (1.2) is the Euler-Lagrange equation of the
energy functional

	 : H → R, 	(u) =
∫

�

(
1

2
|∇u|2 − F(x,u)

)
dx,

which means that solutions of (1.2) are precisely the critical points of 	. Here
F(x,u) = ∫ u

0 f (x, τ ) dτ , and H is a first order Sobolev space chosen in accordance



122 T. Weth

with the boundary conditions. Speaking of variational properties of a solution u of
(1.2), we refer to any information on the position of u ∈ H with respect to the ‘en-
ergy landscape’ of 	. Such information could be a minimax characterization of the
corresponding critical 	-value, an estimate of the Morse index of u with respect to
	 or the fact that u has been obtained by minimization subject to additional con-
straints. We recall that, roughly speaking, the Morse index of a critical point u of
	 is the maximal number of orthogonal directions in which, starting from u, 	 is
locally strictly decreasing. As an example of the relationship between variational and
geometric properties, we mention a variant of Courant’s nodal domain theorem stat-
ing that—for a fairly large class of superlinear nonlinearities f —the Morse index of
a solution u of (1.2) controls the number of its nodal domains. This was observed by
Benci and Fortunato [14].

The relationship between variational and geometric properties has attracted grow-
ing interest in recent years but is still far from being understood. In the present survey
we focus on symmetry results for (1.2) relying on the variational framework. More
precisely, we consider radial domains � ⊂ R

n and radially symmetric nonlinearities
f , and we examine which amount of symmetry of � is inherited by solutions with
given variational characteristics. We do this for (1.2) and in part also for the quasilin-
ear generalization

−�pu = f (x,u), x ∈ �, (1.3)

where �p = ∇ · (|∇u|p−2∇u) is the p-Laplace operator for p > 1.
As highlighted by the already mentioned symmetry result of Gidas, Ni and Niren-

berg, positive solutions of semilinear boundary value problems are much better un-
derstood than sign changing ones. This is unsatisfactory since in general (1.2) admits
many nodal solutions, and they appear in highly interesting problems. In particular,
nodal solutions play a key role in describing segregation phenomena in elliptic and
parabolic systems with a competitive coupling [29, 37, 38]. Moreover, nodal solu-
tions of (1.2) with f (x,u) = sinh(u) arise in the study of counter-rotating vortices
in planar Euler flows [9, 10]. A further example is given by extremal functions in
Poincaré-Sobolev type inequalities [51] which we will discuss in detail in Sect. 6.1
below. As summarized in the recent survey [11], so far mainly questions concerning
the existence and multiplicity of nodal solutions have been studied. The challenge in
studying qualitative properties of nodal solutions is that many techniques available
for positive solutions—e.g. the moving plane method—do not work anymore.

In the present survey we focus on symmetry results obtained with methods re-
lying on hyperplane reflections and related transformations. Most of these results
apply to positive and to nodal solutions. The main ingredients of the underlying
methods are geometric characterizations of symmetries and rather well known tools
from partial differential equations like the maximum principle (and its variants), the
unique continuation principle and regularity theory for solutions of (degenerate) ellip-
tic equations. We will also make use of a topological tool: the Borsuk-Ulam Theorem
(see Theorem 6.21 below). It seems that—in the context of symmetry problems for
(1.2)—this theorem was first used by Pacella and the author [72] and more recently by
Mariş [67].

One purpose of the present survey is to stress the common concepts of a large
part of the recent ‘hyperplane reflection methods’ introduced and elaborated in
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[13, 22–24, 52, 64, 65, 67, 72, 77, 84–86]. The classical moving plane method—
which is also based on hyperplane reflections—does not play a prominent role in the
present survey, and we refer the reader to [18] for a concise account on this method.

For some results discussed here we will give rather detailed proofs, while for oth-
ers we refer to an extended version of this survey, see [89]. This is done since we also
consider generalizations and variants of recent results. Moreover, some proofs given
in the literature are not self contained and do not seem to be well known, whereas a
quite elementary presentation is possible in the framework of this survey.

The article is organized as follows. In Sect. 2 we review different notions of sym-
metry and discuss possible characterizations via hyperplanes and half spaces. For the
sake of consistency Sect. 3 is devoted to polarization, a simple rearrangement rela-
tive to half spaces which is extremely useful in the context of symmetry problems. In
particular, following and extending work of Brock [23], we will characterize notions
of local symmetry via polarization. Moreover, we review results of van Schaftingen
[84–86] on universal approximations of symmetrizations by polarization. In Sect. 6
we apply the tools of the preceding sections to constrained minimization problems
which admit minimizers solving equations of type (1.2) and (1.3). We give special
attention to problems where the corresponding minimizers change sign and therefore
classical methods do not work. In this section we also sketch an interesting recent
approach of Mariş [67]—partly based on ideas of Lopes [64]—which makes use of
hyperplane reflections in a different way than the methods presented before. Finally,
in Sect. 7 we review results obtained in joint work with Gladiali and Pacella [52, 72]
on solutions of (1.2) with Morse index bounds.

We emphasize that the present survey is solely devoted to symmetry of solutions
in radial domains via reflection methods and related transformations. For a discus-
sion of symmetry, rearrangements and symmetrization in a broader context including
domain-dependent problems, we refer the reader to [18, 48, 54, 56, 58–60, 69] and
the references therein. Even within the present restricted framework, the survey is
far from complete. We therefore briefly mention some recent developments which
we had to leave out. In [83, 84], van Schaftingen proved the existence of symmetric
critical points located on the minimax level corresponding to Liusternik-Schnirelman
or linking type characterization. In the context of elliptic systems, reflection meth-
ods were applied e.g. in [23, 64, 65, 67], whereas Lopes and Mariş also considered
integro-differential equations [66]. Finally, in joint work with Gazzola, Berchio and
Ferrero [15, 47] we studied symmetry via polarization for higher order semilinear
boundary value problems.

1.1 General Notation

Throughout the paper, Br(x) denotes the open ball centered at x ∈ R
N . Moreover, Sr

denotes the r-sphere centered at zero, and in the special case of the unit sphere we
write S in place of S1.

Let P denote the set of all affine hyperplanes in R
N and P0 the set of all hy-

perplanes, i.e. the set of all T ∈ P containing the origin. For T ∈ P we denote by
RT : R

N → R
N the reflection at T .

We also consider the set H of all open affine half spaces in R
N and H0 the subset

of all H ∈ H with 0 ∈ ∂H . For given H ∈ H we write RH : R
N → R

N instead of R∂H
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for the reflection at the hyperplane ∂H , and we let Ĥ ∈ H denote the complementary
half space, i.e. Ĥ = RH (H) = R

N \ H . We also set

H(p) := {H ∈ H : p ∈ H } and H0(p) := {H ∈ H0 : p ∈ H } for p ∈ R
N .

Given a nonzero vector e ∈ R
N \ {0}, we write T (e) = e⊥ for the perpendicular hy-

perplane and H(e) = {x · e > 0} ∈ H0 for the half space of vectors which form an
acute angle with e. Here and in the following, · denotes the Euclidean inner product
in R

N . In this situation we also write Re in place of RT (e) for the reflection at T (e).
Moreover, we write �(e) = H(e) ∩ � for subsets � ⊂ R

N .
Next we consider functions u : � → R, where � ⊂ R

N . We write u+ := max{u,0}
and u− := min{u,0} for the positive and negative part of u, so that u = u+ + u−. For
c ∈ R, uc := {x ∈ � : u(x) ≥ c} denotes the c-superlevel set of u. We call a hyper-
plane T ∈ P a symmetry hyperplane for u if � = RT (�) and u ≡ u ◦ RT . Moreover,
we call a half space H ∈ H dominant for u if u(x) ≥ u(RH x) for all x ∈ � ∩ H with
RH x ∈ �, and we call it subordinate for u if u(x) ≤ u(RH x) for all x ∈ � ∩ H with
RH x ∈ �. If u is defined on � = R

N , we write z ∗ u : R
N → R for the translation of

u with respect to z ∈ R
N , i.e., [z ∗ u](x) = u(x − z).

We use standard notation for function spaces such that Lebesgue and Sobolev
spaces. We will mainly be working with the first order Sobolev spaces W 1,p(�),
W

1,p
loc (�) and W

1,p

0 (�), see e.g. [50].

In the remainder of this survey, unless stated otherwise, we will always assume that
� ⊂ R

N is a radial domain, so either � is R
N , a ball, an annulus, or the exterior of

a ball centered at the origin.

2 Symmetry via Hyperplanes, Half Spaces and Reflections

In this section we discuss different types of symmetry and their characterizations
using hyperplanes and reflections.

2.1 Radial Symmetry

A function u : � → R is called radial (or radially symmetric) if u(x) = u(y) for every
x, y ∈ � with |x| = |y|, x �= y. Since for any such points there exists T ∈ P0 with
RT x = y, we find that

u : � → R is radial if and only if every T ∈ P0 is a symmetry hyperplane for u.
(2.1)

Next we consider a subspace V ⊂ R
N , and we call a function u : � → R radial with

respect to V if u(x) only depends on the orthogonal projection of x onto V and the
distance of x to V , which means that u(x) = u(y) for every x, y ∈ R

N which have
the same distance to V and satisfy x − y ∈ V ⊥. Similarly as in (2.1) we then have:

u is radial with respect to V if and only if

every hyperplane T containing V is a symmetry hyperplane for u.
(2.2)
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Let us briefly consider some special cases. In case V = {0} we recover the usual
notion of radial symmetry. If V = Rp for some p ∈ R

N \ {0}, we also say that u

is axially symmetric with respect to the axis Rp. If V is a hyperplane, then radial
symmetry with respect to V is just reflection symmetry with respect to V , while radial
symmetry with respect to V = R

N is an empty condition. In case V has codimension
at least two in R

N , we can express radial symmetry with respect to V in terms of
normal derivatives at hyperplanes. This fact is used in [67], where a proof of the
following basic observation is given.

Lemma 2.1 For u ∈ C1(�) and a subspace V ⊂ R
N with dimV ≤ N − 2 the follow-

ing are equivalent.

(i) u is radially symmetric with respect to V .
(ii) For every hyperplane T ∈ P containing V we have uν ≡ 0 on T , where uν de-

notes the normal derivative of u at T .

2.2 Schwarz Symmetry

A function u : � → R is said to be Schwarz symmetric if for every c ∈ R the su-
perlevel set uc of u is equal to � or the intersection of � with a ball centered at
zero. In other words, Schwarz symmetric functions are radial and nonincreasing in
the radial variable. Note that this notion is slightly more general than in the literature
since it also includes functions defined in an annulus or the exterior of a ball. Schwarz
symmetry can be characterized easily via half spaces. For simplicity we restrict our
attention to continuous functions.

Lemma 2.2 A continuous function u : � → R is Schwarz symmetric if and only if
every half space H ∈ H(0) is dominant for u.

Proof We note that for every pair of points x, y ∈ � with |x| < |y| there exists pre-
cisely one half space H ∈ H(0) containing x and such that RH x = y. Henve every
H ∈ H(0) is dominant for u if and only if u(x) ≥ u(y) for every x, y ∈ � with
|x| < |y|. By continuity of u, this is true if and only if u(x) ≥ u(y) for every x, y ∈ �

with |x| ≤ |y|, and the latter property is obviously equivalent to the Schwarz symme-
try of u. �

For functions defined in the entire space, it is sometimes useful to extend the notion
of Schwarz symmetry as follows. We call a function u : R

N → R Schwarz symmetric
up to translation if the translated function z ∗ u : R

N → R is Schwarz symmetric for
some z ∈ R

N . We have the following useful characterization.

Proposition 2.3 Let u : R
N → R be continuous and such that lim|x|→∞ u(x) ∈ R ∪

{±∞} exists. Then the following statements are equivalent:

(i) u or −u is Schwarz symmetric up to translation.
(ii) Every half space H ∈ H is dominant or subordinate for u.
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The fact that (i) implies (ii) is an immediate consequence of Lemma 2.2, but the
other implication is not so obvious, see [89] for a proof. Here we need the extra
assumption on the existence of the limit. Indeed, if g : R → R is monotone but not
constant, then the function u : R

n → R, u(x) = g(x1) satisfies (ii) but is not Schwarz
symmetric up to translation.

The result can be generalized slightly; one can replace the assumption on the con-
tinuity of u in Proposition 2.3 by (upper or lower) semicontinuity. This however is
crucial; consider the function u : R → R defined by u ≡ 1 on (−1,1] and u ≡ 0 else-
where. Then u has property (ii) of Proposition 2.3 but is not Schwarz symmetric up
to translation.

2.3 Foliated Schwarz Symmetry

Let N ≥ 2 in this section, and let p ∈ S be a unit vector. A function u : � → R will
be called foliated Schwarz symmetric with respect to p if, for every r > 0 and c ∈ R,
the restricted superlevel set {x ∈ Sr : u(x) ≥ c} is equal to Sr or a geodesic ball in the
sphere Sr centered at rp. Hence u is axially symmetric with respect to the axis Rp

and nonincreasing in the polar angle θ = arccos[ x
|x| · p]. We simply call u foliated

Schwarz symmetric if u has this property for some unit vector p. The name ‘foliated
Schwarz symmetric’ was introduced in [77] and refers to the foliation of � by spheres
with the same center. Alternatively, one could use the notion ‘cap symmetric’ to stress
the relationship with spherical cap symmetrization, see Sect. 5 below. We have the
following elementary characterization of foliated Schwarz symmetry.

Proposition 2.4 Let u : � → R be a continuous function.

(i) u is foliated Schwarz symmetric with respect to p ∈ S if and only if every half
space H ∈ H0(p) is dominant for u.

(ii) u is foliated Schwarz symmetric if and only if every half space H ∈ H0 is domi-
nant or subordinate for u.

Part (i) is proved similarly as Lemma 2.2, using now the fact that for every two
points x, y ∈ � with |x| = |y| and |x − p| < |y − p| there exists precisely on half
space H ∈ H0(p) with RH x = y. Part (ii) is stated in [22, Lemma 4.2] under slightly
stronger assumptions on u. Since the proof given there is not completely self con-
tained, we also give a proof in [89].

As a byproduct of Propositions 2.3 and 2.4(ii), we have the following.

Corollary 2.5 Let u : R
N → R be a continuous function such that lim|x|→∞ u(x) ∈

R ∪ {±∞} exists. Suppose moreover that for every z ∈ R
N the translated function

z ∗ u : R
N → R is foliated Schwarz symmetric. Then u or −u is Schwarz symmetric

up to translation.

Proof By assumption and Proposition 2.4(ii), for every z ∈ R
N , every H ∈ H0 is

dominant or subordinate for the translated function z∗u. This yields that every H ∈ H
is dominant or subordinate for u. Hence Proposition 2.3 implies that u or −u is
Schwarz symmetric up to translation. �
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As in Proposition 2.3, the assumption concerning the existence of the limit for
|x| → ∞ is crucial in Corollary 2.5, as can be seen by considering u(x) = g(x1),
where g is a monotone but non-constant function.

3 Polarization

In this section we discuss polarization, a simple rearrangement which appeared al-
ready more than 50 years ago as a set transformation in a paper of Wolontis [91] on
a planar capacity problem. In a similar context it was used by Ahlfors [2]. Baern-
stein and Taylor [7] introduced polarization for functions, and in [6] Baernstein ap-
plied it to derive general integral inequalities associated with different types of sym-
metrizations. Moreover, Dubinin [42–44] and Solynin [78] studied capacity problems
in higher dimensions with the help of polarization. In their seminal paper [24], Brock
and Solynin applied polarization to variational problems related to nonlinear partial
differential equations, and from then on it has been used extensively in this context,
see e.g. [13, 15, 22, 23, 47, 77, 83–85] and the references therein.

Given an affine half space H ∈ H, the polarization uH : R
N → R of a function

u : R
N → R with respect to H is defined by

uH (x) =
{

max{u(x),u(RHx)}, x ∈ H,

min{u(x),u(RHx)}, x ∈ R
N \ H.

This rearrangement is clearly related to the notions of dominant and subordinate half
spaces introduced in Sect. 2. More precisely, the half space H is dominant for u if
and only if u coincides with uH , and this is true if and only if the complementary half
space Ĥ is subordinate for u. One goal of this survey is to illustrate the usefulness
of polarization in the analysis of symmetries of solutions to variational problems
associated with integral functionals. We will consider problems of this type in Sect. 6
below. For this we need the following invariance properties of polarization.

Lemma 3.1 Let u : R
N → R be a measurable function and H ∈ H.

(i) If F : R → R is a continuous function such that
∫

RN |F(u)| dx < ∞, then∫
RN F (uH ) dx = ∫

RN F (u) dx.

(ii) If u ∈ W
1,1
loc (RN), then uH ∈ W

1,1
loc (RN). If in addition G : R × [0,∞) → R

is a continuous function such that
∫

RN |G(u, |∇u|)| dx < ∞, then∫
RN G(uH , |∇uH |) dx = ∫

RN G(u, |∇u|) dx.

We note that (i) is a general consequence of Cavalieri’s principle and the equimea-
surability of rearrangements, but in the case of polarization it can also be proved by
a simple change of variables. It is a nice feature of polarization that the proof of (ii)
is similarly easy, although the integrands depend on the gradient.

Proof of Lemma 3.1(ii) If u ∈ W
1,1
loc (RN), then the restriction of uH to H is in

W
1,1
loc (H) since it is the maximum of two W

1,1
loc -functions. Similarly, the restriction

of uH to Ĥ belongs to W
1,1
loc (Ĥ ). Moreover, both restrictions have a common trace
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on ∂H , so it follows that uH ∈ W
1,1
loc (RN). Now let M ⊂ R

N denote the coincidence
set of u and uH . Then ∇uH = ∇u almost everywhere on M , whereas uH = u◦RH

and ∇uH = RT ◦∇u◦RH almost everywhere on R
N \ M , where T is the hyperplane

in P0 parallel to ∂H . Since the set M is symmetric with respect to RH , we conclude
that∫

RN

G(uH , |∇uH |) dx =
∫

M

G(u, |∇u|) dx +
∫

RN\M
G(u ◦ RH, |∇u ◦ RH |) dx

=
∫

RN

G(u, |∇u|) dx. �

A rather immediate consequence of Lemma 3.1 is the following.

Corollary 3.2 Let 1 ≤ p < ∞, u ∈ W 1,p(RN) and H ∈ H. Then uH ∈ W 1,p(RN),
and

‖∇uH ‖Lp(RN) = ‖∇u‖Lp(RN), ‖∇u±
H ‖Lp(RN) = ‖∇u±‖Lp(RN). (3.1)

Proof Applying Proposition 3.1 with F(t) = |t |p and G(t, s) = |s|p , we infer that
uH ∈ W 1,p(RN) and the first equality in (3.1) holds. The other equalities fol-
low from the first one applied to u±, since by definition of polarization we have
(uH )± = (u±)H pointwise on R

N . Here it is essential that we use the definition
u− = min{u,0}. �

Remark 3.3 (i) (Extension to functions defined on radial subdomains) If � ⊂ R
N

is a radial subdomain and H ∈ H0, then � is symmetric with respect to RH . Hence
we may define the polarization of a function u : � → R with respect to H simply by

uH (x) =
{

max{u(x),u(RHx)}, x ∈ � ∩ H,

min{u(x),u(RHx)}, x ∈ � \ H.

It is easy to see that analogues of Lemma 3.1 and Corollary 3.2 hold in this setting.
Moreover, if � is a ball in R

N and H ∈ H is an affine half space, then we can also
define uH : � → R as the polarization of the trivial extension of u to R

N restricted
to �. However, in this case analogues of Lemma 3.1(ii) and Corollary 3.2 only hold
for half spaces in H(0) and nonnegative functions u : � → R satisfying Dirichlet
boundary conditions in weak sense. More precisely, if H ∈ H(0), then Lemma 3.1
resp. Corollary 3.2 hold for nonnegative functions u ∈ W

1,1
0 (�), u ∈ W

1,p

0 (�), re-

spectively, and then the polarized functions are also in W
1,1
0 (�) resp. W

1,p

0 (�).
(ii) The invariance properties stated in Lemma 3.1 also hold for integral function-

als with x-dependence provided that the integrands are symmetric with respect to the
reflection RH . Moreover, integrands satisfying pointwise reflection inequalities lead
to inequalities between the functional values for u and uH , see e.g. [83, Proposi-
tion 2.19]. In this survey, we restrict our attention to integrands which do not depend
(explicitly) on the space variable. Moreover, we merely remark that polarization also
gives rise to integral inequalities of convolution type, see e.g. [6].
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(iii) It is obvious from the definition that the existence of derivatives in the strong
sense are in general not preserved by polarization. In particular, if u ∈ C1(RN), then
uH does not need to belong to C1(RN). In fact, if u ∈ C1(RN) is a function such that
uH ∈ C1(RN) for every half space H ∈ H, then u has some form of local symmetry
which will be analyzed in Sect. 4. Similarly, higher order weak derivatives are also not
preserved by polarization. In particular, if u ∈ Wm,2(RN) and m ≥ 2, then uH does
not need to be in Wm,2(RN). So at first glance it is surprising that in [15] polarization
has also been applied to derive foliated Schwarz symmetry of a class of solutions to
higher order Dirichlet problems of the type

(−�)mu = f (|x|, u) in B1(0), u = ∂u

∂r
= · · · = ∂m−1u

∂rm−1
= 0 on ∂B1(0).

(3.2)
This is possible since, instead of working in a subspace of Wm,2(RN), one can trans-
form (3.2) into an integral equation posed in Lp(RN) for some p > 1, using the
Dirichlet-Greenfunction of the polyharmonic operator (−�)m. We refer the reader to
[15] for details.

4 Local Symmetry via Polarization

In this section we restrict our attention to C1-functions. Following and extending
work of Brock [23], we discuss notions of local symmetry. We will see that these
notions, although somewhat strange at first glance, appear naturally in constrained
minimization problems (see e.g. Example 6.6 below). Moreover, as has been observed
by Brock [23] in the case of local Schwarz symmetry, they can be characterized in a
simple way via polarization, see Proposition 4.3 below.

Definition 4.1 Let u ∈ C1(RN).

(i) u is called locally Schwarz symmetric if, for every c ∈ R, the superlevel set uc is
R

N or a ball in R
N , and |∇u| is constant on ∂uc .

(ii) u is called locally foliated Schwarz symmetric if, for every c ∈ R and r > 0, the
restricted superlevel set {x ∈ Sr : u(x) ≥ c} is a geodesic ball in Sr and |∇Sr u| is
constant on the relative boundary of this set in Sr .

Here and in the following, ∇Sr u denotes the projection of ∇u onto the tangent
bundle of Sr , i.e.

∇Sr u(x) = ∇u(x) − ∇u(x) · x
r2

x for x ∈ Sr .

The definition of local Schwarz symmetry is extracted from Brock [23, p. 232], al-
though it is not stated explicitly there. It is stronger than the notion of local symmetry
given in other papers of Brock (see [20, 21]), which includes functions with super-
level sets given as disjoint unions of balls. Concerning the shape of locally symmetric
functions, the following can be shown.
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Fig. 2 A locally Schwarz
symmetric function which is not
radially symmetric

Proposition 4.2 Let u ∈ C1(RN).

(i) If N ≥ 2, u is locally Schwarz symmetric and A is a connected component of the
set {x ∈ R

N : ∇u(x) �= 0}, then A is radially symmetric with respect to some z ∈
R

N , and the function u|A : A → R is radially symmetric and strictly decreasing
in the distance to z.

(ii) If N ≥ 3, u is locally foliated Schwarz symmetric and A is a connected compo-
nent of the set {x ∈ Sr : ∇Sr u(x) �= 0} for some r > 0, then A is axially symmet-
ric with respect to the axis Rp for some unit vector p ∈ R

N , and the function
u|A : A → R is axially symmetric w.r.t. Rp and strictly decreasing in the polar
angle θ = arccos[ x

|x| · p].

The proof of Part (i) is sketched in [23, Corollary 1]. Part (ii) is proved along the
same lines, see [89] for details. The following simple criterion for local symmetry in
terms of polarization is the main result of this section. We point out that Part (i) is
essentially due to Brock [23], although it is not stated in the same form in [23].

Proposition 4.3 Let u ∈ C1(RN).

(i) If uH ∈ C1(RN) for every H ∈ H, then every nonempty superlevel set uc is either
R

N , a ball, a hyperplane or the exterior of a ball, and |∇u| is constant on ∂uc .
If furthermore c∞ = lim|x|→∞ u(x) ∈ R ∪ {−∞} exists and u ≥ c∞ on R

N ,
then u is locally Schwarz symmetric.

(ii) If uH ∈ C1(RN) for every H ∈ H0, then u is locally foliated Schwarz symmetric.

The proof of this characterization relies on the following geometric lemma. Here
we recall that for v ∈ R

N \ {0} we write Rv : R
N → R

N for the reflection at the
hyperplane T (v) = v⊥, i.e.,

Rv x = x − 2
v · x
|v|2 v for x ∈ R

N .

Lemma 4.4

(i) (See [23, Lemma R]) Let U ⊂ R
N be a nonempty open set with C1-boundary �,

and let ν(x) denote the exterior normal to U at x ∈ �. If

ν(y) = Ry−z ν(z) for all y, z ∈ �, y �= z, (4.1)

then U is either a half space, a ball or the exterior of a ball in R
N .
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(ii) Let S ⊂ R
N be a sphere (not necessarily centered at the origin) and U ⊂ S be

a nonempty open set with C1-boundary � satisfying (4.1), where ν(x) ∈ TxS

denotes the exterior normal to U at x ∈ �. Then U is a geodesic ball in S.

Proof (i) and (ii) can be proved simultaneously. The proof is similar to the one of
(i) given by Brock in [23, Lemma R], the modifications being a matter of taste. If
the normal ν is constant on �, then U is a half space in case (i) and a hemisphere
in case (ii). Suppose now that ν(y1) �= ν(y2) for some points y1, y2 ∈ �. By (4.1) we
have ν(y1) · (y2 − y1) = ν(y2) · (y1 − y2) �= 0. Hence the lines t �→ y1 + tν(y1) and
t �→ y2 + tν(y2) intersect precisely in one point given by

w = y1 + |y1 − y2|2
2ν(y1) · (y2 − y1)

ν(y1) = y2 + |y1 − y2|2
2ν(y2) · (y1 − y2)

ν(y2) ∈ R
N,

and |y1 − w| = |y2 − w|. We may assume that w = 0, so that |y1| = |y2| =: r . Now
consider arbitrary x ∈ � \ {y1, y2}; it then suffices to show |x| = r . Since yi = rν(yi)

for i = 1,2 or yi = −rν(yi) for i = 1,2, equation (4.1) implies that Ryi−x yi = rν(x)

for i = 1,2 or Ryi−x yi = −rν(x) for i = 1,2. Hence the values

Ryi−x yi − x = |yi − x|2 − 2yi · (yi − x)

|yi − x|2 (yi − x) = |x|2 − r2

|yi − x|2 (yi − x), i = 1,2,

coincide. If |x| �= r , then y1−x

|y1−x|2 = y2−x

|y2−x|2 and therefore y1 = y2, contrary to the
choice of y1 and y2. Hence |x| = r , as claimed. �

We may now complete the

Proof of Proposition 4.3 (i) Fix x, y ∈ R
N with x �= y and u(x) = u(y). Let H ∈ H

be such that x ∈ H and RH x = y. Moreover, let v = u◦RH , so that in a neighborhood
of x the function uH is the maximum of u and v. In this situation it is well known
that one-sided directional derivatives of uH at x satisfy

lim
t→0
t>0

uH (x + td) − uH (x)

t
= max{∇u(x) · d,∇v(x) · d} for d ∈ R

N .

Since by assumption uH is differentiable at x, this implies that ∇u(x) = ∇v(x), while
by definition ∇v(x) = Rx−y ∇u(y). Hence we have

∇u(x) = Rx−y ∇u(y) for every x, y ∈ R
N with x �= y and u(x) = u(y). (4.2)

Now, for arbitrary c ∈ R, (4.2) implies that

|∇u(x)| = |∇u(y)| for x, y ∈ ∂uc with x �= y, (4.3)

so that |∇u| is constant on ∂uc . From this we easily deduce that the regular values of
u are dense in R (note that this does not follow from Sard’s Lemma since we only
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assume that u is a C1-function). Now if c is a regular value of u, then (4.2) and (4.3)
yield

ν(x) = Rx−y ν(y) for x, y ∈ ∂uc with x �= y,

where ν(x) = − ∇u(x)
|∇u(x)

is the exterior normal to uc at x ∈ ∂uc . Hence the asserted
shape of uc is a consequence of Lemma 4.4(i).

If c is a singular value of u, then uc = ⋂∞
i=1 uci

for an increasing sequence (ci)i
of regular values converging to c, and therefore we also get the asserted shape.

Finally, if u(x) → c∞ as |x| → ∞ and u ≥ c∞ on R
N , then uc is a ball for c > c∞

and equal to R
N for c ≤ c∞. Hence u is locally Schwarz symmetric.

(ii) Let r > 0. If x, y ∈ Sr and x �= y, then there exists H ∈ H0 such that x ∈ H

and RH x = y. Hence, by the same argument as in (i),

∇u(x) = Rx−y ∇u(y) for all x, y ∈ Sr with x �= y and u(x) = u(y). (4.4)

From this it is easy to see that also

∇Sr u(x) = Rx−y ∇Sr u(y) for all x, y ∈ Sr with x �= y and u(x) = u(y), (4.5)

so that |∇Sr u| is constant on the relative boundary of the set {x ∈ Sr : u(x) ≥ c} for
every c ∈ R, and ν(x) = Rx−y ν(y) for different points x, y on this boundary if c is a
regular value of u|Sr . We can therefore proceed as in (i)—now using Lemma 4.4(ii)
—to show that all sets {x ∈ Sr : u(x) ≥ c}, c ∈ R are geodesic balls in Sr . �

Remark 4.5 (Extension to functions defined on radial subdomains)

(i) If � ⊂ R
N is a radial subdomain, the notion of local foliated Schwarz symmetry

can be extended in an obvious way to functions in C1(�) by only considering
spheres Sr ⊂ � in Definition 4.1(ii). Clearly Proposition 4.3(ii) extends to this
situation: if uH ∈ C1(�) for every H ∈ H0, then u is locally foliated Schwarz
symmetric.

(ii) Let � ⊂ R
N be a ball centered at zero. Then u ∈ C1(�) is called locally Schwarz

symmetric if uc is a ball in � for every c ∈ R and |∇u| is constant on ∂uc . We
then have the following variant of Proposition 4.3:

If u ∈ C1(�) is a nonnegative function such that u = 0 on ∂� and uH ∈
C1(RN) for every H ∈ H, then u is locally Schwarz symmetric.

5 Symmetrization via Polarization

So far we have characterized different symmetry properties of functions with the help
of hyperplane reflections and polarization. In this context, it also seems appropriate
to review some results on the approximation of symmetrizations by iterated polar-
ization. These results are very useful to analyze the behavior of integral functionals
under symmetrization, see e.g. Theorem 5.1 below. Let u : R

N → R be a Lebesgue
measurable function. If the superlevel set uc has finite measure for sufficiently large
c ∈ R, then the Schwarz symmetrization u∗ : R

N → R of u is defined as the unique



Symmetry of Solutions to Variational Problems 133

upper semicontinuous Schwarz symmetric function such that the superlevel sets of u

and u∗ have the same measure for every c. More precisely, we define

u∗(y) := sup
{
c ∈ R : |uc| ≥

∣∣Br(0)
∣∣} for y ∈ R

N with r = |y|,
where | · | denotes Lebesgue measure. Similarly, the spherical cap symmetrization u


of u is defined as the function which is axially symmetric with respect to the axis
ReN and such that the superlevel sets of the restrictions of u and u
 to Sr have the
same N − 1-dimensional Lebesgue measure for every r > 0. Strictly speaking, this
definition is only valid for those r > 0 such that the restriction of u to the sphere Sr

is measurable, i.e., for almost every r > 0. Hence u
 is only defined up to sets of
measure zero. By Cavalieri’s principle, we have the implications

u ∈ Lp(RN), u ≥ 0 =⇒ u∗ ∈ Lp(RN) and
∫

RN

u
p∗ dx =

∫
RN

up dx,

(5.1)

u ∈ Lp(RN) =⇒ u
 ∈ Lp(RN) and
∫

RN

|u
|p dx =
∫

RN

|u|p dx,

(5.2)

for 1 ≤ p < ∞. We also have the following inequalities for Dirichlet type integrals.

Theorem 5.1 Let 1 < p < ∞, and let u ∈ W 1,p(RN). Then:

(i) u
 ∈ W 1,p(RN), and ‖∇u
‖Lp(RN) ≤ ‖∇u‖Lp(RN).
(ii) If u ≥ 0, then u∗ ∈ W 1,p(RN) and ‖∇u∗‖Lp(RN) ≤ ‖∇u‖Lp(RN).

Part (ii) was proved for p = 2 in [74] and then for general p ≥ 1 in [5, 82] with
the help of the coarea formula. Part (i) is due to Kawohl [56, Corollary 2.35] for
N = 2 (see also [73] for the special case N = 2 and p = 2) and to Smets and Willem
[77] for general N . Theorem 5.1(i) and (ii) are examples of Polya-Szegö inequali-
ties. The name Polya-Szegö inequality or Polya-Szegö principle usually stands for a
statement of the form that a gradient-depending functional is nonincreasing under
a certain rearrangement. Polya-Szegö inequalities for more general rearrangements
can be found e.g. in [56, 85]. The strategy of the proofs in [77, 85] is to approximate
symmetrization by polarization. In the case of Schwarz symmetrization, this strategy
has already been introduced by Brock and Solynin [24]. The following general result
on symmetrization via iterated polarization is due to van Schaftingen, see [85, 86].

Theorem 5.2 Let 1 ≤ p < ∞.

(i) There exists a sequence (Hn)n ⊂ H(0) of affine half spaces such that, for
any nonnegative function u ∈ Lp(RN), the sequence (un)n ⊂ Lp(RN), n ∈ N

defined by

u1 := u and un+1 := [un]Hn for n ∈ N, (5.3)

converges strongly to u∗ in Lp(RN).
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(ii) There exists a sequence (Hn)n ⊂ H0(eN) such that, for any function u ∈
Lp(RN), the sequence (un)n ⊂ Lp(RN) defined by (5.3) converges strongly to
u
 in Lp(RN).

Using this result and arguing as in [24, 77], we complete the proof of Theorem 5.1
as follows: Let u ∈ W 1,p(RN), and let (un)n be the sequence given in part (ii) of
Theorem 5.2. By Lemma 3.1 and Corollary 3.2, we have

‖un‖Lp(RN) = ‖u‖Lp(RN) and ‖∇un‖Lp(RN) = ‖∇u‖Lp(RN) for every n ∈ N,

hence (un)n ⊂ W 1,p(RN) is a bounded sequence. Since un → u
 in Lp(RN) by
Theorem 5.2(ii), it follows that, for a subsequence, un ⇀ u
 weakly in W 1,p(RN).
Hence ‖∇u
‖Lp(RN) ≤ ‖∇u‖Lp(RN) by weak lower semicontinuity of the function
u �→ ‖∇u‖Lp(RN).

Similarly, assuming u ≥ 0 and using Theorem 5.2(i), we obtain u∗ ∈ W 1,p(RN)

and ‖∇u∗‖Lp(RN) ≤ ‖∇u‖Lp(RN).
We do not include a proof of Theorem 5.2 here, but we comment on the con-

struction of the ‘symmetrizing sequences’ of half spaces. As observed in [86], the
sequences (Hn)n ⊂ H(0) resp. (Hn)n ⊂ H0(eN) in Theorem 5.2 can be taken of the
form

(Hn)n = (H ′
1,H

′
2,H

′
1,H

′
2,H

′
3,H

′
1,H

′
2,H

′
3,H

′
4, . . .),

where (H ′
n)n ⊂ H(0) resp. (H ′

n)n ⊂ H0(eN) is an arbitrary dense sequence of half
spaces in H(0), H0(eN), respectively. Here density refers to standard metrics on the
sets H(0) and H0(eN), see [86]. In [84] it was proved that also random sequences
(Hn)n ⊂ H(0) resp. (Hn)n ⊂ H0(eN) are admissible in Theorem 5.2. Prior to these
results, weaker versions of Theorem 5.2 had been established in [24, 77] where the
sequence of half spaces was constructed such that it depends on the initial function
u. It is tempting to guess that every dense sequence (Hn)n ⊂ H(0) resp. (Hn)n ⊂
H0(eN) is admissible in Theorem 5.2. This guess is wrong, as shown by the following
counterexample.

Example 5.3 Let v : R
N → R be a nontrivial Schwarz symmetric continuous func-

tion with compact support, i.e., v is radial and decreasing in the radial variable,
v(0) > 0 and v ≡ 0 outside a sufficiently large ball centered at zero. We also con-
sider translated function u = p0 ∗ v, where p0 is an arbitrary unit vector. Finally,
we let (qn)n be a strictly decreasing sequence of real numbers such that q0 = 1 and
limn→∞ qn > 0. Next, let (Hn) ⊂ H(0) be an arbitrary dense subset. We define half
spaces In ∈ H(0) such that iterated polarization of u with respect to the mixed se-
quence

(I1,H1, I2,H2, I3,H3, I4,H4, . . .) (5.4)

does not converge to u∗, although this sequence is still dense in H(0). Note that every
Hn can be written as

Hn = {x : x · pn > −λn} with unit vectors pn ∈ R
N and λn > 0, n ∈ N. (5.5)
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Since for any n ∈ N we have |qnpn| < |qn−1pn−1|, there exists precisely one half
space In ∈ H(0) containing the point qnpn and such that the reflection at ∂In maps
qnpn onto qn−1pn−1. Hence, defining un ∈ C(RN) inductively by u0 := u and un :=
[un−1]In (polarization with respect to In) for n ∈ N, it is easy to see that un = [qnpn]∗
v for every n ∈ N, and therefore [un]Hn = un for every n ∈ N by (5.5). Consequently,
the sequence (un)n coincides with the one obtained from u0 by iterated polarization
with respect to the mixed sequence in (5.4). However, since limn→∞ qn > 0, it is
clear that un does not tend to u∗ = v in Lp(RN) for any p ≥ 1.

Theorem 5.1 also extends to p = 1 with a somewhat different proof, see [24,
p. 1781] for details. In applications to variational problems, it is important to know
under which conditions equality holds in the Polya-Szegö type inequalities. For
the Schwarz symmetrization we have the following classical result of Brothers and
Ziemer [25].

Theorem 5.4 Let 1 < p < ∞. If u ∈ W 1,p(RN) is nonnegative with ‖∇u∗‖p =
‖∇u‖p and such that the set {x ∈ R

N : u(x) > 0, ∇u(x) = 0} has zero Lebesgue
measure, then u is Schwarz symmetric up to translation.

This result does not extend to the case p = 1, as pointed out in [25]. Moreover, it
has no analogue for spherical cap symmetrization of functions u ∈ W 1,p(RN), as the
following example shows.

Example 5.5 Consider an arbitrary C1-function ũ : [0,∞) → R such that

ũ(0) = ũ′(0) = 0, ũ > 0 in (0,1), ũ(1) = 0 and ũ < 0 in (1,∞),

and suppose also that u decays to zero exponentially as |x| → ∞. Moreover, let u ∈
C1(RN) be defined by u(x) = ũ(|x|) cos θ for x �= 0, where θ = arccos[ x

|x| ·eN ] is the
polar angle from the xN -axis. Then the zero set of ∇u has measure zero, and it is easy
to see that u
 ≡ u in B1(0) and u
 ≡ −u in R

N \ B1(0). Hence ‖∇u
‖p = ‖∇u‖p ,
but u does not coincide with u
 up to rotation.

Since the construction of this example solely relies on the fact that spherical cap
symmetrization is a rearrangement along submanifolds of lower dimension, it also
appears in Steiner symmetrization and monotone rearrangement in cylindrical do-
mains. In the latter context it has been noted in [16]. Under additional assumptions
on the underlying domain, a sharp characterization of the equality case in Steiner
symmetrization has been obtained by Cianchi and Fusco [27], extending earlier work
of Kawohl [56].

Remark 5.6 (Extension to functions defined on radial subdomains)

(i) If � ⊂ R
N is a radial subdomain, then the definition of spherical cap symmetriza-

tion extends to measurable functions u : � → R by only considering spheres Sr

contained in �, and Theorem 5.1(i) holds within this setting.
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(ii) If � is a ball in R
N centered at zero, then also the definition of Schwarz sym-

metrization extends to measurable functions u : � → R. However, in this setting
Theorem 5.1(ii) only holds for nonnegative functions in W

1,p

0 (�).

6 A Class of Constrained Minimization Problems

In this section we apply the concepts of the preceding sections to constrained min-
imization problems. We consider a rather simple setting which shows the potential
and the limits of different types of arguments. Let, as before, � ⊂ R

N be a radial
domain. We fix 1 < p < ∞ and let, as usual, p∗ := Np

N−p
denote the critical Sobolev

exponent if N > p. Moreover, we consider continuous functions f0, . . . , fk : R → R

satisfying the following growth condition.

(H0) There exists a constant c0 > 0 such that, for i = 0, . . . , k:
If N > p, then

• |fi(t)| ≤ c0(1 + |t |p∗−1) for t ∈ R if � is bounded;
• |fi(t)| ≤ c0(|t |p−1 + |t |p∗−1) for t ∈ R if � is unbounded.

If N = p, then, for some s > p,

• |fi(t)| ≤ c0(1 + |t |s−1) for t ∈ R if � is bounded;
• |fi(t)| ≤ c0(|t |p−1 + |t |s−1) if � is unbounded.

If N < p and � is unbounded, then |fi(t)| ≤ c0|t |p−1 in a neighborhood of
t = 0.

We now put Fi(t) = ∫ t

0 fi(τ ) dτ for i = 0, . . . , k and consider the functional

E : W → R, E(u) = 1

p

∫
�

|∇u|p dx −
∫

�

F0(u) dx.

Here and in the following, W stands for either one of the Sobolev spaces W 1,p(�)

and W
1,p

0 (�). By standard arguments in critical point theory, (H0) implies that E is
a well-defined C1-functional. We consider the following constrained minimization
problem.

(MP) Minimize E subject to the constraints
∫
�

Fi(u) dx = γi , i = 1, . . . , k, where
the values γ1, . . . , γk ∈ R are given.

We will not be concerned with the existence of minimizers, which can be proved in
various cases by arguments based on compactness or concentration compactness, see
e.g. [80, 90]. Instead we discuss the symmetries of minimizers, and we start with the
following observation.

Theorem 6.1 Suppose that (MP) admits a minimizer u. Then:

(i) The spherical cap symmetrization u
 of u is also a minimizer of (MP).

(ii) If u ≥ 0 and either � = R
N or � is a ball and W = W

1,p

0 (�), then the Schwarz
symmetrization u∗ of u is also a minimizer of (MP).
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Proof (i) By Cavalieri’s principle, it is easy to see that
∫
�

Fi(u
) dx = ∫
�

Fi(u) dx

for i = 0, . . . , k. Moreover, by Theorem 5.1(i) and Remark 5.6(i), we have∫
�

|∇u
|p dx ≤ ∫
�

|∇u|p dx, hence E(u
) ≤ E(u) and u
 must also be a minimizer
of (MP). The proof of (ii) is similar, using now Theorem 5.1(ii) and Remark 5.6(ii). �

Theorem 6.1 is important for the (numerical or theoretical) calculation of the en-
ergy minimum corresponding to the minimization problem (MP), since it ensures that
minimizing among symmetric functions yields the global minimum. On the other
hand, Theorem 6.1 does not rule out the existence of non-symmetric minimizers. In
order to analyze the shape of all minimizers, we need the following regularity as-
sumption.

(H1) Every minimizer u of (MP) is a C1-function on �.

This property is known in many cases. In particular, it is ensured by the following
weak nondegeneracy condition:

(H2) If α1, . . . , αk ∈ R are such that
∑k

i=1 αifi ≡ 0 on a non-empty open interval in
R, then α1, . . . , αk = 0.

To see that (H2) implies (H1), let u be a minimizer of (MP). We may assume that u

is non-constant in �. Then a neighborhood of u in the closed set

M :=
{
u ∈ W :

∫
�

Fi(u) dx = γi for i = 1, . . . , k

}
(6.1)

is a C1-submanifold of W of codimension k, and by the Lagrange-Multiplier rule
(see e.g. [92, Theorem 43.D]), u is a weak solution of

−�pu = f0(u) +
k∑

i=1

αi fi(u) in �, (6.2)

for some α1, . . . , αk ∈ R. Moreover, u satisfies Dirichlet boundary conditions on ∂�

in case W = W
1,p

0 (�) and Neumann boundary conditions in case W = W 1,p(�).
Combining the growth assumption (H0) with the regularity results in [53, Sect. 1]
and [61], we infer that u ∈ C1(�) (in fact, ∇u is even locally Hölder continuous but
we do not need this here). Hence (H2) implies (H1).

If (H1) is assumed, the shape of minimizers is described by the following theorem
which—apart from part (i)—is a combination of (variants of) results by Brock [23]
and Mariş [67].

Theorem 6.2 Suppose that (H1) holds, and let u be a minimizer of (MP). Then:

(i) u is locally foliated Schwarz symmetric.
(ii) If k ≤ N − 2, then there exists a subspace V ⊂ R

N with dimV = k such that u

is radial with respect to V .
(iii) If � = R

N , then u+ and −u− are locally Schwarz symmetric, and
lim|x|→∞ u(x) = 0. If in addition (H2) holds, then u or −u is locally Schwarz
symmetric, and either u ≡ 0 or u is nonzero everywhere in R

N .
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(iv) If � is a ball, W = W
1,p

0 (�) and u is nonnegative, then u is locally Schwarz
symmetric.

Proof (i) Let H ∈ H0. Since u ∈ M , also uH ∈ M by Lemma 3.1 and Remark 3.3(i),
and E(uH ) = E(u) by Corollary 3.2. Hence uH is also a solution of (MP), so that
uH ∈ C1(�) by (H2). By Proposition 4.3 and Remark 4.5 we conclude that u is
locally foliated Schwarz symmetric.

(ii) is a special case of a recent result of Mariş [67]. It relies on a rather different
reflection method. We will sketch the method and the proof of (ii) in Sect. 6.3 below.

(iii) As in (i) we show that uH ∈ C1(�) for every H ∈ H. Taking into account
that u ∈ Lp(RN), Proposition 4.3 then implies that the superlevel set uc of u is a
ball for c > 0 and the exterior of a ball for c < 0, and that |∇u| is constant on ∂uc .
Hence u+ and −u− are locally Schwarz symmetric, and u(x) → 0 as x → ∞. Now
suppose that in addition (H2) holds, and suppose by contradiction that u changes
sign in R

N . By the local Schwarz symmetry of u+ and u−, it is easy to see that
there exists a half space H such that the set {u > 0} is contained in H and {u < 0}
is contained in Ĥ . Without loss we assume that H = {x1 > 0}, and we consider the
function v ∈ W 1,p(RN) defined by

v(x) =

⎧⎪⎨
⎪⎩

u(x1 − 1, x2, . . . , xn) if x1 ≥ 1;

0 if 0 < x1 < 1;

u(x) if x1 ≤ 0.

It is clear that v is also a minimizer of (MP). By (H2) and the subsequent remarks, it is
therefore a solution of (6.2). However, the restriction of v to H is nonnegative, so the
strong maximum principle of Vazquez [88] implies that either v ≡ 0 or v > 0 in H ,
which is a contradiction. We point out that the strong maximum principle is appli-
cable since f0(t), . . . , fk(t) are of order |t |p−1 as t → 0 by assumption (H0). So we
conclude that u does not change sign, which implies that either u or −u is (nonneg-
ative and) locally Schwarz symmetric. Finally, applying again the strong maximum
principle, we infer that u ≡ 0 or u is nonzero everywhere in R

N .
(iv) Taking into account the definition of uH given in Remark 3.3(i), we can again

show that uH ∈ C1(�) for every H ∈ H. Since u is nonnegative, we therefore con-
clude by Remark 4.5 that u is locally Schwarz symmetric. �

Remark 6.3

(i) In the special case N ≥ 3 and k = 1, it follows from Theorem 6.2 that, under as-
sumption (H1), any minimizer u of (MP) is locally foliated Schwarz symmetric
and axially symmetric with respect to an axis Rp. Note however that in gen-
eral axial symmetry and local foliated Schwarz symmetry do not imply foliated
Schwarz symmetry, as shown by Example 5.5.

(ii) In case � = R
N , k ≤ N −1 and γi �= 0 for at least one of the constraints in (MP),

Mariş showed in [67, Theorem 2] that there exists a subspace V ⊂ R
N with

dimV = k − 1 and z ∈ R
N such that the translated function z ∗ u is radial with

respect to V . In the special case k = 1, we then conclude by Theorem 6.2(iii)
that u or −u is Schwarz symmetric up to translation.
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(iii) The proof of Theorem 6.2(iii) shows that, as a consequence of (H0) and the
strong maximum principle, u cannot have plateaus at level zero if � is un-
bounded. Here by plateaus we mean open regions where ∇u is zero. Plateaus
may appear at levels different from zero, as shown by examples in [21, 76].
Moreover, in case � is bounded, our growth assumption (H0) does not exclude
plateaus at level zero.

(iv) With the exception of the latter statement in part (iii), Theorem 6.2 can be ex-
tended to quite general constrained minimization problems where the constraints
also depend on |∇u|. This is due to the fact that Lemma 3.1 is the only tool in the
proof which depends on the assumptions on the energy functional and the con-
straints. However, it is more difficult to ensure assumption (H1) in this context.
For an example with constraints depending on |∇u|, see Sect. 6.2.

(v) In [21], Brock showed that any positive solution u of the Dirichlet problem for
the equation −�pu = f (u) in a ball with continuous f has some form of local
symmetry. However, as remarked already in Sect. 4, this symmetry is weaker
than local Schwarz symmetry since superlevel sets of u may be disjoint unions
of balls. See [21] for explicit examples.

In the semilinear case p = 2, we get a better symmetry result for minimizers of
(MP) under an additional Lipschitz condition. The following result and its proof is
inspired by Brock [22, Sect. 4].

Theorem 6.4 Let u ∈ W be a minimizer of (MP), and suppose that in addition to
(H2) the following is satisfied:

(H3) p = 2, and f0, . . . , fk are locally Lipschitz continuous.

Then:

(i) u is foliated Schwarz symmetric.
(ii) If � is a ball, W = W

1,p

0 (�) and u > 0 in �, then u is Schwarz symmetric.
(iii) If � = R

N , then u or −u is Schwarz symmetric up to translation.

We remark that, by standard elliptic regularity, (H3) implies that minimizers of
(MP) are classical C2-solutions of (6.2).

Proof (i) Let H ∈ H0. By Proposition 2.4(ii), it suffices to show that

H is dominant or subordinate for u. (6.3)

As noted in the proof of Theorem 6.2(i), v := uH is also a solution of (MP). We may
assume that u is non-constant in �, so that v is non-constant as well. Hence, as noted
above, (H3) implies that u and v are classical solutions of

−�u = f0(u) +
k∑

i=1

αi fi(u), −�v = f0(u) +
k∑

i=1

βi fi(v) in �, (6.4)

for some αi,βi ∈ R, i = 1, . . . , k. We suppose by contradiction that (6.3) is false,
which means that u �≡ v and u ◦ RH �≡ v. Then there exists a nonempty open subset
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U ⊂ � such that u ≡ v on U and u is non-constant on U . By (6.4) we then have∑k
i=1(αi − βi)fi(u(x)) = 0 for all x ∈ U , hence αi = βi for i = 1, . . . , k by assump-

tion (H2). As a consequence, u,v are solutions of −�u = h(u) and −�v = h(v) in
� with h(t) = f0(t)+∑k

i=1 αifi(t). Since h is locally Lipschitz continuous by (H3),
w := u − v satisfies a linear equation of the form

−�w = V (x)w in �

with a locally bounded function V . Moreover, since w ≡ 0 in U , the unique contin-
uation principle (see e.g. [55]) implies that w ≡ 0 in � and therefore u ≡ v in �,
contrary to what we have assumed. Hence (6.3) is true, and the assertion follows by
Proposition 2.4(ii).

(ii) By Lemma 2.2, it suffices to show that every half space H ∈ H(0) is dominant
for u. If � ⊂ H , then H is dominant for u by definition. If � �⊂ H , it is easy to
see that there exists a nonempty open subset U ⊂ Ĥ ∩ � close to the boundary such
that u < u ◦ RH on U and u is non-constant on U . Indeed, this follows since u is
continuous, u > 0 in � and u = 0 on ∂�. Hence u coincides with uH on U , where
the polarization uH of u is now defined according to Remark 3.3(i). As in (i) we now
deduce that u ≡ uH on �, which means that H is dominant for u, as required.

(iii) By Theorem 6.2(iii), u(x) tends to zero as |x| → ∞. Hence u is Schwarz
symmetric up to translation by (i) and Corollary 2.5. Alternatively, instead of using
(i) one could show directly that every H ∈ H is dominant or subordinate for u; then
the Schwarz symmetry follows from Proposition 2.3. �

Remark 6.5

(i) Part (ii) of Theorem 6.4 also follows from the symmetry result of Gidas, Ni
and Nirenberg [49] discussed in the introduction. It also holds for 1 < p < 2 if
f0, . . . , fk are locally Lipschitz continuous, since in [32, 33] the moving plane
method has been extended to this case.

(ii) Results on Schwarz symmetry of positive solutions to the Dirichlet problem
−�pu = f (u) in �, u = 0 on ∂� have also been obtained for p > 2 in case �

is a ball and f is a positive function, see [20, 34]. Moreover, in [34] also Steiner
symmetric domains were considered.

(iii) Even in the simplest case where k = 1 and (H3) holds, minimizers of (MP)
are in general not radial when W = W 1,2(�), which corresponds to Neumann
boundary conditions. An example for this has been considered by Ni and Takagi
[70] in the case where � is a ball. Moreover, Esteban [45] considered an example
in the case where � is the exterior of a ball. In the case of an annulus, examples
for nonradial minimizers corresponding to one constraint can be given both for
W = W 1,2(�) and W = W

1,2
0 (�), see e.g. [28] and [19, p. 453].

(iv) Even in the semilinear case p = 2, the Lipschitz assumption is crucial in all
parts of Theorem 6.4. For non-Lipschitz data, the minimization problem (MP)
may admit solutions with plateaus, and then symmetries can be broken eas-
ily by varying the location of these plateaus. We illustrate this by Example
6.6 below which is a slight modification of an example given by Mariş [67].
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The appearance of plateaus is somewhat related to the nonuniqueness of so-
lutions of initial value problems for ordinary differential equations with non-
Lipschitz data. The simplest example in this context seems to be the equation
ẋ = 3

√
x2 which allows nontrivial solutions vanishing identically on arbitrarily

large intervals.

Example 6.6 (A minimizer subject to two constraints without axial symmetry) Fol-
lowing [67, p. 326], we let α ∈ (0,1), and let j ∈ C(R) ∩ C1(0,∞) be a function
satisfying

• j ≡ 0 on (−∞,0], and j (s) = sα for 0 < s ≤ 1.
• The function J : R → R, J (s) = ∫ s

0 j (τ ) dτ has compact support.

We consider the Dirichlet integral E : W
1,2
0 (�) → R, E(u) = ∫

�
|∇u|2 dx and the

following minimization problem:

(M�) minimize E under the constraints
∫

�

J (u) dx =
∫

�

J (−u) dx = 1.

Note that this minimization problem is a special case of (MP) only if � is
bounded, since otherwise (H0) is not satisfied. Nevertheless, it has been shown in
[67, Example 7] that (MRN ) admits minimizers of the form uz,w = z ∗ u0 − w ∗ u0,
where u0 is a nonnegative Schwarz symmetric function with compact support and
z,w ∈ R

N are chosen such that z ∗ u0 and w ∗ u0 have disjoint supports. Fix
z,w ∈ R

N \ {0}, z �= −w with this property and R > 0 such that suppuz,w ⊂ BR ,
where BR := BR(0). Since W

1,2
0 (BR) ⊂ W

1,2
0 (RN) by trivial extension, we find that

uz,w ∈ W
1,2
0 (BR) is a minimizer of (MBR

) which is not axially symmetric, hence in
particular not foliated Schwarz symmetric. Note however that uz,w is locally foliated
Schwarz symmetric.

We finally remark that the nonnegativity assumption in Theorem 6.2(iv) and The-
orem 6.4(ii) can be removed if f0, . . . , fk are odd functions, hence F0, . . . ,Fk are
even. Note that in this case minimizers of (MP) come in pairs {±u}.

Theorem 6.7 Suppose (H1) holds, � is a ball, W = W
1,p

0 (�) and that the functions
f0, . . . , fk are odd. Let u be a minimizer of (MP). Then u or −u is locally Schwarz
symmetric. If in addition (H2) and (H3) hold, then u or −u is Schwarz symmetric.

Proof By Theorems 6.2 and 6.4, it suffices to show that u does not change sign.
Since F0, . . . ,Fk are even, it is easy to see that also |u| is a minimizer of (MP),
so |u| is locally Schwarz symmetric by Theorem 6.2(iv). Hence the set {|u| > 0} =⋃

n∈N
{|u| ≥ 1

n
} is a countable union of nested balls and therefore connected. Since

by continuity u does not change sign in this set, it does not change sign at all. �

In the following two sections, we consider a special class of examples for the
minimization problem (MP) and a related constrained minimization problem.
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6.1 Extremal Functions in Poincaré-Sobolev-type Inequalities

Assume that � is bounded, and consider the family of Poincaré-Sobolev-type in-
equalities

(∫
�

|u − u�|q dx

) p
q ≤ C(p,q,�)

∫
�

|∇u|p dx, u ∈ W 1,p(�), (6.5)

where u� = 1
|�|

∫
�

udx is the average of u on � and

1 ≤ q ≤ p∗ if N > p, 1 < q < ∞ if N ≤ p.

This family of inequalities can be derived by combining Poincaré inequalities
with Sobolev embeddings. However, this derivation neither yields optimal constants
C(p,q,�), nor does it say whether equality can be achieved and how extremal func-
tions look like. It is easy to see that C(p,q,�) is the inverse of the number

Lp,q(�) = inf

{∫
�

|∇u|p dx : u ∈ W 1,p(�),

∫
�

udx = 0,

∫
�

|u|q dx = 1

}
. (6.6)

In the following we assume that � is a bounded radial domain; then the minimization
problem corresponding to (6.6) is a special case of (MP). Concerning the existence
of minimizers, we have the following result. It follows by a standard compactness
argument for subcritical q and is due to Demyanov and Nazarov in the critical case,
see [41, Theorem 7.3].

Theorem 6.8 There exists β > 0 such that the infimum in (6.6) is attained under each
of the following assumptions.

(i) p ≥ N .
(ii) p < N and 1 ≤ q < p∗.

(iii) p < N+1
2 + β and q = p∗.

From Theorem 6.1 we therefore deduce

Corollary 6.9 Under the assumptions of Theorem 6.8, there exists a foliated Schwarz
symmetric minimizer of (6.6).

Concerning the shape of arbitrary minimizers, Theorems 6.2 and 6.4 provide the
following information. Note here that assumptions (H0)–(H2) are satisfied, and that
(H3) is satisfied if p = 2.

Theorem 6.10 Let u be an extremal function for (6.5), i.e., a minimizer of (6.6) up to
subtraction of a constant. Then:

(i) u is locally foliated Schwarz symmetric.
(ii) If N ≥ 4, then there exists a two-dimensional subspace V ⊂ R

N such that u is
radial with respect to V .

(iii) If p = 2, then u is foliated Schwarz symmetric.
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In [51] we considered the superlinear case p = 2 and q ≥ 2, and we proved the fol-
lowing geometric properties of minimizers in addition to the foliated Schwarz sym-
metry.

Theorem 6.11 Let p = 2, q ≥ 2, and let u be a minimizer of (6.6) which is foliated
Schwarz symmetric with respect to some unit vector p, i.e., u = u(r, θ) with r = |x|
and θ = arccos( x

|x| · p). Then

(i) u is strictly decreasing in θ ∈ (0,π).
(ii) if q is sufficiently close to 2, then u is odd with respect to the reflection at the

hyperplane T (p).

If � is the unit ball, then we have in addition:

(iii) ∂pu > 0 on � \ {±p}. If τ is another unit vector in R
N orthogonal to p, then

∂τ u has precisely four nodal domains. Here ∂p and ∂τ denote the directional
derivatives in direction p and τ , respectively.

(iv) if N = 2, the function u is not antisymmetric with respect to the reflection at
H(p) when q is sufficiently large.

We point out that if � is a ball, properties (i) and (ii) imply that u takes its max-
imum and minimum precisely at two antipodal points {±p} on the boundary of �,
and u has precisely two nodal domains. Moreover, in the case where u is odd with
respect to the hyperplane T (p), the four nodal domains of ∂τu considered in (ii) are
precisely the four quadrants in � cut off by the hyperplanes T (p) and T (τ). This
holds in particular for q close to 2.

The methods underlying the proof of Theorem 6.11 are quite different from the
focus of the present survey, so we only add brief comments and refer the reader to
[51] for details. The most difficult parts of the proof are the strict inequality in (i) and
property (ii), see [51, Sect. 5]. For both parts we need to carefully study the boundary
values of the directional derivatives ∂pu and ∂τ u for τ perpendicular to e. In a first
step, we show that ∂pu is positive on ∂� \ {±p} and on the hyperplane T (p) defined
above. In a second step, we show that ∂pu can have at most two nodal domains. It then
follows that ∂pu must be positive in one of the half balls cut off by the hyperplane
T (p). With this information, we then can conclude the proof of (ii) by a moving plane
argument. This is one of few examples where the moving plane method is applied to
a problem with Neumann boundary conditions.

We finally note that in case p = q = 2, minimizers of (6.6) are precisely the
eigenfunctions of the Neumann-Laplacian on � corresponding to the first nonzero
eigenvalue. These eigenfunctions are of the form u(r, θ) = g(r) cos θ , and properties
(i)–(iii) can be verified easily.

6.2 Least Energy Nodal Solutions

We consider the Dirichlet problem{−�u = |u|p−2u in �,

u = 0 on ∂�,
(6.7)
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in a smooth bounded domain �, where p > 2 is subcritical, i.e. p < 2∗ = 2N
N−2 if

N ≥ 3. Solutions of (6.7) are critical points of the functional

E : W 1,2
0 (�) → R, E(u) = 1

2

∫
�

|∇u|2 dx − 1

p

∫
�

|u|p dx.

Multiplication of (6.7) with u± and partial integration shows that all nodal solutions
belong to the set

C =
{
u ∈ W

1,2
0 (�) : u+, u− �= 0 :

∫
�

|∇u±|2 dx =
∫

�

|u±|p dx

}
.

In order to find nodal (i.e., sign changing) solutions with least possible energy, one
can try to minimize E on C . We note however that C is not a C1-submanifold
of W

1,2
0 (�). Nevertheless, the following result was proved by Castro-Cossio-

Neuberger [26].

Theorem 6.12 The value c := infu∈C E(u) is positive and attained by some u ∈ C .
Moreover, every minimizer u ∈ C of E|C is a classical sign changing solution of (6.7)
which has Morse index two with respect to E and precisely two nodal domains.

We recall that the Morse index of a solution u of (6.7) is the number of negative
Dirichlet eigenvalues of the linearized operator −� + p|u|p−2 in �. A more general
definition of the Morse index will be given in Sect. 7 below. Concerning the sym-
metry of least energy nodal solutions, i.e., of minimizers u ∈ C of E|C , we prove the
following in [13, Sect. 3].

Theorem 6.13 If � is a bounded radial domain in R
N , N ≥ 2, then every least

energy nodal solution of (6.7) is foliated Schwarz symmetric.

Remark 6.14

(i) The existence and foliated Schwarz symmetry of least energy nodal solutions has
been established in a more general setting than considered here, see [12, 13, 26,
63, 87] for details.

(ii) Aftalion and Pacella [1] showed subsequently that every least energy nodal so-
lution u of (6.7) is nonradial. Furthermore, the nodal set {x ∈ � : u(x) = 0} of
u touches the boundary of �, see [1, Theorem 1.3]. If N ≥ 2 and p ≥ 3, these
statements are also true for any nodal solution of (6.7) with Morse index less than
or equal to N , see Remark 7.8 below.

Strictly speaking, Theorem 6.13 does not fit in the abstract framework of the min-
imization problem (MP), since the constraint contains gradient terms and C is not a
C1-manifold. However, the proof is a nice and easy application of the abstract tools
developed so far combined with Theorem 6.12.

Proof of Theorem 6.13 Let r > 0 be such that Sr ⊂ �, and let p ∈ S be a point such
that the restriction of u to Sr attains its maximum at rp. We fix a half space H ∈
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H0(p) and show that it is dominant for u. Indeed, as a consequence of Lemma 3.1
and Corollary 3.2, the values of the integrals

∫
�

|u±|p dx and
∫
�

|∇u±|2 dx remain
unchanged when passing from u to uH . Hence uH is also a minimizer of 	|C , and
therefore a solution of (6.7) by Theorem 6.12. Since the function w = uH − u is
nonnegative in H ∩ � and therefore also −�w = |uH |p−2uH − |u|p−2u ≥ 0, we
conclude by the strong maximum principle that either w ≡ 0 in H ∩ � or w > 0
in H ∩ �. However, the latter is impossible since w(rp) = 0 by the choice of p.
Consequently we have w ≡ 0, i.e., u ≡ uH on H ∩ �. Hence the half space H is
dominant for u, as claimed. By Proposition 2.4(i), we now conclude that u is foliated
Schwarz symmetric with respect to p. �

6.3 Radial Symmetry with Respect to Subspaces via the Method of Mariş

As before, let � ⊂ R
n be a radial domain. Here we review an approach of

Mariş [67]—partly based on earlier ideas by Lopes [64, 65]—which yields radial
symmetry of solutions to the minimization problem (MP) with respect to subspaces
of R

N . The following transformation is the basic ingredient in this approach. For a
function u : � → R and H ∈ H0, let uH : � → R be the even extension of u|H , i.e.,

uH (x) =
{

u(x), x ∈ H ∩ �,

u(RHx), x ∈ � \ H.

Although we use a similar notation as for polarization, there should be no danger
of confusion since in this section we shall not use polarization at all. Note that the
transformation u �→ uH preserves continuity and maps W 1,p(�) into W 1,p(�) for
1 ≤ p ≤ ∞, but it is not a rearrangement. Hence we cannot expect invariance of
integral functionals as stated for polarization in Lemma 3.1. On the other hand, given
a solution u of the minimization problem (MP), one can ask which half spaces in H
have the property that also uH satisfies the constraints in (MP). Following Mariş [67],
this gives rise to the following definition.

Definition 6.15 Let u ∈ M , where M is defined in (6.1). We say that a half space H ∈
H0 splits the constraints in two for u if one of the following equivalent conditions
hold:

(i) uH ∈ M .
(ii) uĤ ∈ M .

(iii)
∫
�∩H

Fi(u(x)) dx = ∫
�∩Ĥ

Fi(u(x)) dx for i = 1, . . . , k.

Similarly, we say that a hyperplane T ∈ P0 splits the constraints in two if one (and
then both) of the half spaces separated by T satisfy the conditions (i)–(iii).

The equivalence of conditions (i)–(iii) follows by a simple change of variable. We
note the following crucial observation.

Lemma 6.16 Let u ∈ M be a minimizer of (MP), and suppose that some half space
H ∈ H0 splits the constraints in two for u. Then:
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(i) uH and uĤ are also minimizers of (MP).
(ii) If (H1) holds, then the normal derivative uν vanishes on ∂H .

Proof (i) By definition, it is easy to check that E(uH ) + E(uĤ ) = 2E(u). On the
other hand, since both uH and uĤ satisfy the constraints, we have E(uH ) ≥ E(u)

and E(uĤ ) ≥ E(u). Hence in both cases equality holds, and the assertion follows.
(ii) By (i), uH is a minimizer of (MP) and therefore a C1-function by (H1). This

immediately implies that uν ≡ 0 on ∂H . �

We now sketch the proof of Theorem 6.2(ii), essentially following the argument
of Mariş [67]. We will recall the statement for convenience.

Theorem 6.17 Suppose that the number k of constraints in (MP) is less than or equal
to N − 2 and that (H1) holds. Then every minimizer u of (MP) is radial with respect
to some k-dimensional subspace V ⊂ R

N .

In fact, Mariş proves a more general result in [67] related to elliptic systems, cf.
Remark 6.23 below. We also warn the reader that the order of arguments differs a
little bit from [67] in our sketch. We will derive the result as a consequence of the
following three lemmas.

Lemma 6.18 Suppose that k ≤ N − 2, and that u is a minimizer of (MP). Then u

admits a symmetry hyperplane.

Lemma 6.19 Let u ∈ M , and let V ⊂ R
N be a subspace with dimV ≥ k + 1. Then

there exists a unit vector e ∈ V such that the hyperplane T (e) splits the constraints
in two for u.

Lemma 6.20 Let u be a minimizer of (MP), and suppose that u is radial with respect
to some subspace V ⊂ R

N with dimV ≤ N − 1. Furthermore, let e ∈ V be a unit
vector such that the hyperplane T (e) splits the constraint in two for u. Then u is
radial with respect to the subspace V ∩ T (e).

Using these lemmas, we can easily complete the proof of Theorem 6.17 as fol-
lows. Inductively, we prove that for j = k, . . . ,N − 1, u is radial with respect
to a j -dimensional subspace of R

N . The case j = N − 1 follows directly from
Lemma 6.18. Now suppose that u is radial with respect to some subspace V , where
k + 1 ≤ dimV ≤ N − 1. By Lemma 6.19, there exists e ∈ V such that T (e) splits
the constraints in two for u. By Lemma 6.20, u is therefore radially symmetric with
respect to V ∩ T (e), which is a subspace of dimension dimV − 1. Hence the claim
follows by induction.

Next we give a proof of Lemmas 6.19 and 6.20. After that we sketch the proof of
Lemma 6.18, where we will use Lemmas 6.19 and 6.20. This will be the most diffi-
cult part of the argument. Lemma 6.19 is a nice and easy application of the following
well known topological result.
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Theorem 6.21 (Borsuk-Ulam Theorem, see e.g. [79, Theorem 9, p. 266]) If n,m

are integers with n ≥ m ≥ 1, then any continuous map f : Sn → R
m admits a point

x ∈ Sn with f (x) = f (−x). Here Sn denotes the unit sphere in R
n+1.

Proof of Lemma 6.19 Let SV denote the unit sphere in V , and let f : SV → R
k be

defined by

f (e) =
(∫

H(e)∩�

G1(u(x)) dx, . . . ,

∫
H(e)∩�

Gk(u(x)) dx

)
.

Then f is continuous, and since SV is a sphere of dimension larger than or equal to k,
Theorem 6.21 yields e ∈ SV such that f (e) = f (−e), i.e.,∫

H(e)∩�

Fi(u(x)) dx =
∫

H(−e)∩�

Fi(u(x)) dx for i = 1, . . . , k.

Since H(−e) = Ĥ (e), we thus conclude that T (e) splits the constraint in two for u. �

Next we give the

Proof of Lemma 6.20 Set H = H(e). Since the function uH is symmetric with re-
spect to reflection at T (e) and radial with respect to V , we have

uH (x + y) = uH (x − y) for every x ∈ V ∩ T (e), y ∈ [V ∩ T (e)]⊥.

Therefore, by a simple change of variable, every hyperplane T containing V ∩ T (e)

splits the constraint in two for uH . Hence Lemma 6.16(ii) and Lemma 2.1 imply that
uH is radial with respect to V ∩ T (e). By the same argument, uĤ is also radial with
respect to V ∩ T (e). Since uH and uĤ coincide with u on T (e), it easily follows that
u is also symmetric with respect to V ∩ T (e). �

We conclude this section by sketching the proof of Lemma 6.18. As a consequence
of Lemma 6.19, there exist a hyperplane T = T (e) which splits the constraints in

two for u. Hence ǔ := uH(e) and û := uĤ(e) are minimizers of (MP) by Lemma 6.16.
Since k +1 ≤ N −1 = dimT (e) by assumption, Lemma 6.19 implies that there exists
unit vectors ě, ê perpendicular to e such that T (ě) splits the constraints in two for ǔ

and T (ê) splits the constraints in two for û. From Lemma 6.20 we therefore infer that

ǔ is radial with respect to T (e) ∩ T (ě), and û is radial with respect to T (e) ∩ T (ê).
(6.8)

If ě and ê coincide up to sign, then u is also radial with respect to T (e) ∩ T (ě),
and in particular T (e) is a symmetry hyperplane for u. Hence we may assume that
ě �= ±ê, and we note that the restriction ũ of u to T (e) is symmetric both with respect
to the reflection at T (ě) and the reflection at T (ê). By a very subtle case distinction
concerning the value of the angle θ spanned by e and ě, Mariş manages to show that
one of the following alternatives is true:



148 T. Weth

(i) u is invariant under the transformation x + y �→ −x + y with x ∈ span{ě, ê} and
y ∈ {ě, ê}⊥.

(ii) There is a unit vector ẽ ∈ span{ě, ê} such that u is invariant under the transfor-
mation x + y �→ −x + y with x ∈ span{e, ẽ} and y ∈ {e, ẽ}⊥.

It is beyond the scope of this survey to present this part of the argument in detail,
so we refer the reader to [67]. Given one of the properties (i) and (ii), it is easy
to conclude the proof. If for instance (ii) holds, then a simple change of variable
shows that every hyperplane T containing {e, ẽ}⊥ splits the constraints in two for
u, and again by Lemmas 2.1 and 6.16(ii) we conclude that u is radially symmetric
with respect to {e, ẽ}⊥. In particular, T (e) is a symmetry hyperplane for u. If (i)
holds, the same argument shows that u is radially symmetric with respect to {ě, ê}⊥.
Combining this information with (6.8), one easily concludes that u is radial with
respect to {e, ě, ê}⊥, so again T (e) is a symmetry hyperplane for u. This completes
the proof of Lemma 6.18.

As remarked in [67], the proof of Lemma 6.18 is very easy under the additional
assumptions (H2) and (H3). Indeed, then we have the following stronger result ob-
served already by Lopes in a more general setting, see [64, Theorem II.5].

Theorem 6.22 Suppose that (H0), (H2) and (H3) are satisfied, and let u be a mini-
mizer of (MP). Moreover, let T ∈ P0 be a hyperplane which splits the constraints in
two for u. Then T is a symmetry hyperplane for u.

Proof We may assume that u is not constant. Let H ∈ H0 such that ∂H = T , so that
v := uH is also a minimizer of (MP) which coincides with u on H . Up to replac-
ing H by Ĥ , we may assume that u is not constant in H ∩ �. We may therefore
proceed precisely as in the proof of Proposition 6.4(i)—using (H2) and the unique
continuation principle—to show that u ≡ v in �. This implies that T is a symmetry
hyperplane for u. �

Remark 6.23 In [64], Lopes used a variant of Theorem 6.22 to prove axial symmetry
of solutions of minimization problems subject to one constraint. One of the major ad-
vantages of the approach of Lopes and Mariş is the fact that it carries over—without
any restriction—to constrained minimization problems related to systems, i.e., prob-
lems for vector valued functions u : � → R

m. For details, we refer the reader to
[64, 65, 67] where this more general framework is considered. In contrast, arguments
based on polarization do not carry over to problems related to systems, unless addi-
tional cooperativity conditions are assumed as in [23].

7 Solutions with Morse Index Bounds

This section is devoted to a further connection—studied in [52, 72]—between sym-
metry of solutions of semilinear elliptic equations and their variational properties. We
consider solutions of

−�u = f (|x|, u) in � (7.1)
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where, as before, � is a (bounded or unbounded) radial subdomain of R
N , N ≥ 2

and f : � × R → R is locally a C1,α-function. We complement (7.1) with Dirichlet
boundary conditions

u = 0 on ∂�, (7.2)

which are empty conditions if � = R
N . The aim of this section is to derive symmetry

properties of solutions of (7.1), (7.2) from Morse index bounds. To define the Morse
index of a solution u to (7.1), (7.2), we introduce the quadratic form

Qu(ϕ,ψ) =
∫

�

[∇ϕ∇ψ − Vu(x)ϕψ
]
dx for ψ,ϕ ∈ C1

c (�), (7.3)

corresponding to a solution u of (7.1), (7.2). Here Vu(x) = f ′(|x|, u(x)), and f ′
stands for the derivative of f with respect to u. Moreover, C1

c (�) denotes the space
of all C1-functions � → R with compact support in �.

Definition 7.1 We say that a C2-solution of (7.1) and (7.2)

• is stable if Qu(ψ,ψ) ≥ 0 for all ψ ∈ C1
c (�);

• has Morse index equal to K ∈ N ∪ {∞} if K is the maximal dimension of a sub-
space X of C1

c (�) such that

Qu(ψ,ψ) < 0 for all ψ ∈ X \ {0}.

These definitions of stability and Morse index are standard in the context of semi-
linear elliptic PDE in (possibly) unbounded domains. In bounded domains �, the
Morse index as defined above is just the number of negative Dirichlet eigenvalues of
the operator −� + Vu(x) in �. Recently there has been a growing interest in stable
and finite Morse index solutions of elliptic equations in unbounded domains, see e.g.
[35, 36, 39, 40, 46]. As noted already by Bahri and Lions in [8], these solutions ap-
pear as possible obstructions for a priori bounds in related boundary value problems
where variational principles allow to control the Morse index. Another motivation
comes from boundary value problems with small diffusion as discussed in [35, 36],
where an asymptotic description of the shape of solutions with finite Morse index is
of interest. We first note a symmetry result for stable solutions of (7.1), (7.2).

Theorem 7.2 ([52]) Let u be a stable solution of (7.1) and (7.2) such that |∇u| ∈
L2(�). Then u is radial.

In case � = R
N and f = f (u) does not depend on x, every stable solution of

(7.1) and (7.2) is constant, as follows by an application of Theorem 7.2 to all transla-
tions of u. This latter result has already been obtained by Dancer [36] under weaker
integrability assumptions on |∇u|. To see that some kind of decay or integrability
assumption for |∇u| is needed, let us consider the case � = R

N and the Allen-Cahn
nonlinearity f (u) = u − u3. In this case (7.1) is given by −�u + u3 = u, which
admits the stable but nonradial solution u(x) = tanh( x1√

2
). We note that the stability
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of this solution can be derived from the fact that ux1 := ∂u
∂x1

is a positive solution of

−�ux1 − Vu(x)ux1 = 0 in R
N .

We quickly sketch the proof of Theorem 7.2 in the case of a bounded radial do-
main �. In this case the assumption |∇u| ∈ L2(�) is automatically satisfied and
Theorem 7.2 is a well known observation, see e.g. [4, 57, 58, 69] and the references
therein. For arbitrarily chosen orthonormal vectors e1, e2 ∈ S , we introduce cylinder
coordinates (r, η, y) defined by x = r[cosηe1 + sinηe2] + y with y ∈ {e1, e2}⊥. It
then suffices to show that the angular derivative uη = ∂u

∂η
satisfies

uη ≡ 0. (7.4)

Differentiating the equation −�u = f (|x|, u) and the boundary conditions with re-
spect to η, we infer that uη solves{−�uη − Vu(x)uη = 0 in �,

uη = 0 on ∂�.
(7.5)

If the underlying domain � is bounded, the first Dirichlet eigenvalue of −� − Vu(x)

in � is nonnegative by the stability of u. Moreover, it is well known that this eigen-
value is simple with a positive eigenfunction. Combining this information with (7.5),
we readily infer that uη may not change sign. Since u is periodic in η, this implies
uη ≡ 0.

In the case where � is unbounded, the proof of (7.4) is more subtle, and we refer
the reader to [52] for details. We merely remark that a crucial role is played by the
Cauchy-Schwarz-inequality

Qu(ψ,ρ)2 ≤ Qu(ψ,ψ)Qu(ρ,ρ) for all ψ,ρ ∈ C1
c (�) (7.6)

which is an immediate consequence of the stability of u.
Next we discuss symmetry properties of higher Morse index solutions of (7.1).

Note that even for solutions with Morse index one we cannot—in general—expect
radial symmetry, since the examples mentioned in Remark 6.5(i) correspond to solu-
tions having Morse index one. Extending earlier work in [72] to unbounded domains,
the following result has been obtained by Gladiali, Pacella and the author.

Theorem 7.3 ([52]) Suppose that f (|x|, s) or f ′(|x|, s) is convex in s for every
x ∈ �. Then every solution u of (7.1) and (7.2) with |∇u| ∈ L2(�) and Morse in-
dex j ≤ N is foliated Schwarz symmetric.

Remark 7.4

(i) The special case j = 1, f convex had been considered earlier in [68, 71].
(ii) The bound N in Theorem 7.3 is optimal in general. In case � is a disc in R

2, this
can be seen by considering f (|x|, u) = λu, where λ is the fourth Dirichlet eigen-
value of the Laplacian in � (counted with multiplicity). It is known that there
exists a corresponding Dirichlet eigenfunction of the form u(x) = J (r) cos 2θ

with r = |x| and θ = arccos x1|x| , where J is a rescaled positive Bessel function.
This function u has Morse index three and is not foliated Schwarz symmetric.



Symmetry of Solutions to Variational Problems 151

In the case when � = R
N and f does not depend on |x|, we deduce the following

result from Theorem 7.3 and Corollary 2.5.

Theorem 7.5 Assume that � = R
N , that f = f (u) does not depend on x and that

f or f ′ is convex. Moreover, suppose that u is a solution of (7.1) with Morse index
j ≤ N , |∇u| ∈ L2(RN) and such that u has a limit as |x| → ∞. Then u or −u is
Schwarz symmetric up to translation.

Proof By translation invariance, for every z ∈ R
N the translated function z∗u is also

a solution of (7.1) with Morse index j ≤ N and |∇u| ∈ L2(RN), hence it is foliated
Schwarz symmetric by Theorem 7.3. Therefore Corollary 2.5 implies that u or −u

is Schwarz symmetric up to translation. �

An immediate corollary of Theorem 7.5 is a nonexistence result for sign changing
solutions.

Corollary 7.6 Under the assumptions of Theorem 7.5, (7.1) does not admit sign
changing solutions u with Morse index j ≤ N and such that

|∇u| ∈ L2(RN) and u(x) → 0 as |x| → ∞.

In the case � = R
N \ B , we have the following stronger nonexistence result for

solutions which may or may not change sign. In contrast to Corollary 7.6, the proof
of this result is quite involved and requires completely different techniques. We refer
the reader to [52, Sect. 4] for details.

Theorem 7.7 Assume that � = R
N \B and f = f (u) does not depend on x and that

either f is convex or f ′ is convex. Then there are no solutions u of (7.1) and (7.2)
with

|∇u| ∈ L2(�), u(x) → 0 as |x| → ∞
and Morse index j ≤ N .

Remark 7.8 Suppose that � is bounded and radial, f = f (u) does not depend on
|x| and f or f ′ is convex. Moreover, let u be a sign changing solution of (7.1), (7.2)
with Morse index less than or equal to N . Then u is nonradial, and the nodal set
{x ∈ � : u(x) = 0} of u touches the boundary of �. The first statement was proved
by Aftalion and Pacella in [1], and the second statement follows by combining the
arguments in [1] with further stability information in half domains which are derived
in the course of the proof of Theorem 7.3. See [72, Theorem 1.2] for details in the
case where f ′ is convex. As a consequence, we infer that least energy nodal solutions
of (6.7) have these properties if N ≥ 2 and p ≥ 3.

In the remainder of this section, we sketch some ideas used in the proof of Theo-
rem 7.3. We restrict our attention to bounded radial domains � from now on, refer-
ring the reader to [52] for the case of unbounded � where major additional difficulties
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have to be circumvented. To simplify notation, we assume that f = f (u) does not de-
pend on x, but the arguments are the same for nonlinearities depending on |x|. Then
the argument consists in three main steps. In the first step, we reduce the foliated
Schwarz symmetry of a solution u of (7.1), (7.2) to the existence of a symmetry hy-
perplane for which u is stable in the corresponding half domains. In the second step,
we further reduce the foliated Schwarz symmetry to nonnegativity of an auxiliary
operator—depending on u—in some half domain. In both steps, we neither use the
convexity assumptions on the nonlinearity nor the Morse index bound on u. These
assumptions are used in the last step, where the Borsuk-Ulam Theorem is applied to
find a direction such that the corresponding half domain has the property required in
Step 2.

For the remainder of this section, we fix a solution u of (7.1), (7.2). Moreover,
for a unit vector e ∈ S we denote by λ1(e,Vu) the first Dirichlet eigenvalue of the
linearized operator −� + Vu in the half domain �(e), cf. Sect. 1.1.

Proposition 7.9 Suppose � is bounded, and suppose that there exists e ∈ S such that
T (e) is a symmetry hyperplane for u and

λ1(e,Vu) ≥ 0. (7.7)

Then u is foliated Schwarz symmetric.

Proof After a rotation, we may assume that e = e2 = (0,1, . . . ,0), hence T (e) =
{x2 = 0}. By Proposition 2.4(ii), it suffices to show that every half space H ∈ H0
is dominant or subordinate for u. So we consider an arbitrary unit vector e′ ∈ S dif-
ferent from ±e and the corresponding half space H := H(e′) ∈ H0. After another
orthogonal transformation which leaves e2 and H(e2) invariant, we may assume that
e′ = (cosη0, sinη0,0, . . . ,0) for some η0 ∈ (−π

2 , π
2 ). Now we choose new coordi-

nates, replacing x1, x2 by polar coordinates r, η with x1 = r cosη, x2 = r sinη, and
leaving x̃ := (x3, . . . , xN) unchanged. The angular derivative uη = ∂u

∂η
then satisfies

{−�uη − Vu(x)uη = 0 in �(e2),

uη = 0 on ∂�(e2),
(7.8)

where the boundary condition comes from the symmetry of u with respect to H(e2).
In the new coordinates, this symmetry can be expressed in form

u(r cos(−η), r sin(−η), x̃) = u(r cosη,−r sinη, x̃) = u(r cosη, r sinη, x̃), (7.9)

which implies that uη is odd in the η-variable. Moreover, similarly as in the proof of
Theorem 7.2, the assumption (7.7) implies that uη does not change sign in �(e2). We
therefore may distinguish the following cases.

(i) uη ≤ 0 in �(e2) and uη ≥ 0 in �(−e2).
(ii) uη ≥ 0 in �(e2) and uη ≤ 0 in �(−e2).

An elementary calculation shows that the half space H(e′) is dominant for u in case
(i) and subordinate for u in case (ii). For details, see [72]. �
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The next task is to find a direction e ∈ S satisfying the assumptions of Proposi-
tion 7.9. For this we consider the difference we : � → R between u and its reflection
at the hyperplane T (e), i.e., we(x) = u(x) − u(Rex). Note that the restriction of we

to the half domain �(e) solves the linear problem{−�we − Ve(x)we = 0 in �(e),

we = 0 on ∂�(e),
(7.10)

where

Ve(x) =
{ 1

we(x)
[f (u(x)) − f (u(Rex))], we(x) �= 0;

f ′(u(x)), we(x) = 0.

We write λ1(e,Ve) for the first Dirichlet eigenvalue of −� − Ve in the half domain
�(e), and we claim the following.

Proposition 7.10 Suppose that there exists a direction e ∈ S such that λ1(e,Ve) ≥ 0.
Then the assumptions of Proposition 7.9 are satisfied, and hence u is foliated Schwarz
symmetric.

Proof If we ≡ 0, then T (e) is a symmetry hyperplane for u; hence Ve = Vu, and
therefore λ1(e,Vu) = λ1(e,Ve) ≥ 0 by assumption. Hence we may assume that
we �≡ 0. Then, by (7.10), the restriction of we to �(e) is a Dirichlet eigenfunction
of −� − Ve in �(e) corresponding to the eigenvalue zero, so by assumption we
have λ1(e,Ve) = 0. Thus we does not change sign. Replacing e by −e if neces-
sary, we find that we > 0 in �(e) by the strong maximum principle. Hence the set
A := {ẽ ∈ S : wẽ > 0 in �(ẽ)} is nonempty. We claim the following about A:

A ⊂ S is open, ∂A is nonempty, and λ1(ẽ, Vẽ) = 0 for every ẽ ∈ A. (7.11)

Here ∂A denotes the relative boundary of A in S . For the moment, we take these
properties for granted and conclude the argument. Let e′ ∈ ∂A; then we′ ≥ 0 and
λ1(e

′,Ve′) = 0 by the continuity of u and (7.11). Since we′ solves (7.10) with e′ in
place of e, the strong maximum principle implies that either we′ > 0 or we′ ≡ 0 in
�(e′). However, the former case is excluded since A is open and therefore e′ /∈ A.
We thus conclude we′ ≡ 0, hence T (e′) is a symmetry hyperplane for u and Ve′ = Vu.
This again yields λ1(e

′,Vu) = λ1(e
′,Ve′) = 0, as required.

It thus remains to show (7.11). Since A does not contain antipodal points by def-
inition, it is clear that ∂A is nonempty. Moreover, if ẽ ∈ A, then, by (7.10), wẽ is a
positive Dirichlet eigenfunction of the operator −� − Vẽ in �(ẽ) corresponding to
the eigenvalue zero, hence λ1(ẽ, Vẽ) = 0. To prove that A is open in S, we use an
argument in the spirit of the moving plane method. Let μ > 0 be chosen sufficiently
small such that, for any subdomain M ⊂ � with |M| < μ and any e ∈ S, the opera-
tor −� − Ve(x) fulfills the strong maximum principle in M , which means that any
nontrivial C2-function satisfying −�w = Ve(x)w in M and w ≥ 0 on ∂M is strictly
positive in M . The existence of such a number μ > 0 is a consequence of the maxi-
mum principle in thin domains, see [17, Proposition 1.1]. Next, let ẽ ∈ A, and choose
a compact set K ⊂ �(ẽ) such that |�(ẽ) \ K| < μ. Since u is continuous and posi-
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tive in the compact set K , there exists a neighborhood N ⊂ S of ẽ such that for every
ê ∈ N we have K ⊂ �(ê), |�(ê) \ K| < μ and wê > 0 in K . By the choice of μ, this
implies that wê > 0 in �(ê) for every ê ∈ N , so that N is contained in A. This shows
that A is open and finishes the proof. �

By Proposition 7.10, we only need to find a direction e ∈ S such that λ1(e,Ve) is
nonnegative. Due to the implicit dependence of the potential Ve on u and f , it seems
difficult to estimate λ1(e,Ve) for general nonlinearities f . At this point our convexity
assumptions on f resp. f ′ in Theorem 7.3 enter. Exemplarily we will only consider
the case where

f ′ is convex in u.

In this case we introduce, for every direction e ∈ S the even part Ves of the potential
Vu(x) = f ′(u(x)) relative to the reflection at the hyperplane H(e), i.e., Ves(x) =
1
2 [f ′(u(x))+f ′(u(Rex))]. We also denote by λ1(e,Ves) the first Dirichlet eigenvalue
of the operator −� − Ves in the half domain �(e). Since f ′ is convex in u, we find
that Ve ≤ Ves in �, which immediately implies that

λ1(e,Ve) ≥ λ1(e,Ves). (7.12)

This inequality is crucial since Ves is much closer related to the linearized potential
Vu, therefore we can hope to use the Morse index bound for u to derive estimates
for the eigenvalue λ1(e,Ves) for some e ∈ S . Here again the Borsuk-Ulam theorem
enters. We first consider the case where the Morse index of u is less or equal to N −1.

Proposition 7.11 Suppose that u has Morse index j ≤ N −1. Then there exists e ∈ S
such that λ1(e,Ves) ≥ 0. Hence, as a consequence of (7.12) and Proposition 7.10, u

is foliated Schwarz symmetric.

Proof By assumption, the linearized operator −� − Vu(x) has precisely j neg-
ative Dirichlet eigenvalues in � (counted with multiplicity), and we choose L2-
orthonormal eigenfunctions ϕ1, ϕ2, . . . , ϕj corresponding to these eigenfunctions. It
then follows that

Qu(ψ,ψ) ≥ 0 for every ψ ∈ W
1,2
0 (�) which is L2-orthogonal to ϕ1, . . . , ϕj .

(7.13)
For e ∈ S , we let ψe ∈ W

1,2
0 (�) denote the odd extension of the unique positive

L2-normalized Dirichlet eigenfunction of −� − Ves in the half domain �(e) corre-
sponding to λ1(e,Ves). We then consider the odd and continuous map

h : S → R
j , h(e) =

[∫
�∩BR

ψe(x)ϕ1(x)dx, . . . ,

∫
�∩BR

ψe(x)ϕj (x)dx

]
.

Since j ≤ N − 1, h must have a zero e ∈ S by the Borsuk Ulam Theorem (see The-
orem 6.21). Then ψe is L2-orthogonal to ϕ1, . . . , ϕj , so Qu(ψe,ψe) is nonnegative
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by (7.13). On the other hand, since ψe is odd with respect to the reflection at T (e),
we have

Qu(ψe,ψe) =
∫

�

[
|∇ψe|2 − Vu(x)ψ2

e

]
dx

=
∫

�

[
|∇ψe|2 − Ves(x)ψ2

e

]
dx = 2λ1(e,Ves).

Hence λ1(�(e),Ves) is nonnegative, as claimed. �

It remains to consider the case where the Morse index j of u equals N . This case
is essentially more complicated, and it is beyond the scope of this survey to go into
details here. We merely remark that in this case we are not able to find e ∈ S such that
λ1(e,Ves) ≥ 0. Instead, we use the even potential Ves in another way to find e ∈ S
such that λ1(e,Ve) is nonnegative, see [52, 72]. So also in this case Proposition 7.10
yields the foliated Schwarz symmetry of u.

Acknowledgement I thank Hans-Christoph Grunau, Bernd Kawohl, Hugo Tavares and Jean van
Schaftingen for helpful comments.

References

1. Aftalion, A., Pacella, F.: Qualitative properties of nodal solutions of semilinear elliptic equations in
radially symmetric domains. C. R. Math. Acad. Sci. Paris 339(5), 339–344 (2004)

2. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in
Higher Mathematics. McGraw-Hill Book Co., New York (1973)

3. Alexandrov, A.D.: A characteristic property of spheres. Ann. Math. Pura Appl. (4) 58, 303–315
(1962)

4. Alikakos, N.D., Bates, P.W.: On the singular limit in a phase field model of phase transitions. Ann.
Inst. H. Poincaré Anal. Non Linéaire 5(2), 141–178 (1988)

5. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. C. R. Acad. Sci. Paris Sér. A-B 280(5),
A279–A281 (1975)

6. Baernstein II, A.: A unified approach to symmetrization. In: Partial Differential Equations of Elliptic
Type (Cortona, 1992), Sympos. Math., XXXV, pp. 47–91. Cambridge Univ. Press, Cambridge (1994)

7. Baernstein II, A., Taylor, B.A.: Spherical rearrangements, subharmonic functions, and ∗-functions in
n-space. Duke Math. J. 43(2), 245–268 (1976)

8. Bahri, A., Lions, P.-L.: Solutions of superlinear elliptic equations and their Morse indices. Commun.
Pure Appl. Math. 45(9), 1205–1215 (1992)

9. Bartolucci, D., Pistoia, A.: Existence and qualitative properties of concentrating solutions for the sinh-
Poisson equation. IMA J. Appl. Math. 72(6), 706–729 (2007)

10. Bartsch, T., Pistoia, A., Weth, T.: N -vortex equilibria for ideal fluids in bounded planar domains
and new nodal solutions of the sinh-Poisson and the Lane-Emden-Fowler equations. Commun. Math.
Phys. 297, 653–686 (2010). doi:10.1007/s00220-010-1053-4

11. Bartsch, T., Wang, Z.-Q., Willem, M.: The Dirichlet problem for superlinear elliptic equations. In: Sta-
tionary Partial Differential Equations. Handb. Differ. Equ., vol. II, pp. 1–55. Elsevier/North-Holland,
Amsterdam (2005)

12. Bartsch, T., Weth, T.: A note on additional properties of sign changing solutions to superlinear elliptic
equations. Topol. Methods Nonlinear Anal. 22(1), 1–14 (2003)

13. Bartsch, T., Weth, T., Willem, M.: Partial symmetry of least energy nodal solutions to some variational
problems. J. Anal. Math. 96, 1–18 (2005)

14. Benci, V., Fortunato, D.: A remark on the nodal regions of the solutions of some superlinear elliptic
equations. Proc. R. Soc. Edinb. Sect. A 111(1–2), 123–128 (1989)

http://dx.doi.org/10.1007/s00220-010-1053-4


156 T. Weth

15. Berchio, E., Gazzola, F., Weth, T.: Radial symmetry of positive solutions to nonlinear polyharmonic
Dirichlet problems. J. Reine Angew. Math. 620, 165–183 (2008)

16. Berestycki, H., Lachand-Robert, T.: Some properties of monotone rearrangement with applications to
elliptic equations in cylinders. Math. Nachr. 266, 3–19 (2004)

17. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc.
Bras. Mat. (N.S.) 22(1), 1–37 (1991)

18. Brezis, H.: Symmetry in nonlinear PDE’s. In: Differential Equations: La Pietra 1996 (Florence). Proc.
Sympos. Pure Math., vol. 65, pp. 1–12. Am. Math. Soc., Providence (1999)

19. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev
exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

20. Brock, F.: Radial symmetry for nonnegative solutions of semilinear elliptic equations involving the
p-Laplacian. In: Progress in Partial Differential Equations, Vol. 1, (Pont-à-Mousson, 1997). Pitman
Res. Notes Math. Ser., vol. 383, pp. 46–57. Longman, Harlow (1998)

21. Brock, F.: Continuous rearrangement and symmetry of solutions of elliptic problems. Proc. Indian
Acad. Sci. Math. Sci. 110(2), 157–204 (2000)

22. Brock, F.: Symmetry and monotonicity of solutions to some variational problems in cylinders and
annuli. Electron. J. Differ. Equ., pp. No. 108, 20 pp. (2003) (electronic)

23. Brock, F.: Positivity and radial symmetry of solutions to some variational problems in R
N . J. Math.

Anal. Appl. 296(1), 226–243 (2004)
24. Brock, F., Solynin, A.Y.: An approach to symmetrization via polarization. Trans. Am. Math. Soc.

352(4), 1759–1796 (2000)
25. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math.

384, 153–179 (1988)
26. Castro, A., Cossio, J., Neuberger, J.M.: A sign-changing solution for a superlinear Dirichlet problem.

Rocky Mt. J. Math. 27(4), 1041–1053 (1997)
27. Cianchi, A., Fusco, N.: Steiner symmetric extremals in Pólya-Szegö type inequalities. Adv. Math.

203(2), 673–728 (2006)
28. Coffman, C.V.: A nonlinear boundary value problem with many positive solutions. J. Differ. Equ.

54(3), 429–437 (1984)
29. Conti, M., Terracini, S., Verzini, G.: Nehari’s problem and competing species systems. Ann. Inst.

Henri Poincaré Anal. Non Linéaire 19(6), 871–888 (2002)
30. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience Publishers, New York

(1953)
31. Crooks, E.C.M., Dancer, E.N., Hilhorst, D., Mimura, M., Ninomiya, H.: Spatial segregation limit of a

competition-diffusion system with Dirichlet boundary conditions. Nonlinear Anal. Real World Appl.
5(4), 645–665 (2004)

32. Damascelli, L., Pacella, F.: Monotonicity and symmetry of solutions of p-Laplace equations, 1 < p <

2, via the moving plane method. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. Lincei (9) Mat.
Appl. 9(2), 95–100 (1998)

33. Damascelli, L., Pacella, F.: Monotonicity and symmetry results for p-Laplace equations and applica-
tions. Adv. Differ. Equ. 5(7–9), 1179–1200 (2000)

34. Damascelli, L., Sciunzi, B.: Regularity, monotonicity and symmetry of positive solutions of m-
Laplace equations. J. Differ. Equ. 206(2), 483–515 (2004)

35. Dancer, E.N.: Stable and finite Morse index solutions on Rn or on bounded domains with small
diffusion. II. Indiana Univ. Math. J. 53(1), 97–108 (2004)

36. Dancer, E.N.: Stable and finite Morse index solutions on Rn or on bounded domains with small
diffusion. Trans. Am. Math. Soc. 357(3), 1225–1243 (2005) (electronic)

37. Dancer, E.N., Du, Y.: On sign-changing solutions of certain semilinear elliptic problems. Appl. Anal.
56(3–4), 193–206 (1995)

38. Dancer, E.N., Du, Y.H.: Competing species equations with diffusion, large interactions, and jumping
nonlinearities. J. Differ. Equ. 114(2), 434–475 (1994)

39. Dancer, E.N., Farina, A.: On the classification of solutions of −�u = eu on R
N : stability outside a

compact set and applications. Proc. Am. Math. Soc. 137(4), 1333–1338 (2009)
40. Dancer, N.: Stable and not too unstable solutions on Rn for small diffusion. In: Nonlinear Dynamics

and Evolution Equations. Fields Inst. Commun., vol. 48, pp. 67–93. Am. Math. Soc., Providence
(2006)

41. Demyanov, A.V., Nazarov, A.I.: On the existence of an extremal function in Sobolev embedding
theorems with a limit exponent. Algebra Anal. 17(5), 105–140 (2005)



Symmetry of Solutions to Variational Problems 157

42. Dubinin, V.N.: Transformation of functions and the Dirichlet principle. Mat. Zametki 38(1), 49–55,
169 (1985)

43. Dubinin, V.N.: Transformation of condensers in space. Dokl. Akad. Nauk SSSR 296(1), 18–20 (1987)
44. Dubinin, V.N.: Capacities and geometric transformations of subsets in n-space. Geom. Funct. Anal.

3(4), 342–369 (1993)
45. Esteban, M.J.: Rupture de symétrie pour des problèmes de Neumann sur-linéaires dans des ouverts

extérieurs. C. R. Acad. Sci. Paris Sér. I Math. 308(10), 281–286 (1989)
46. Farina, A.: On the classification of solutions of the Lane-Emden equation on unbounded domains of

R
N . J. Math. Pures Appl. (9) 87(5), 537–561 (2007)

47. Ferrero, A., Gazzola, F., Weth, T.: Positivity, symmetry and uniqueness for minimizers of second-
order Sobolev inequalities. Ann. Math. Pura Appl. (4) 186(4), 565–578 (2007)

48. Fraenkel, L.E.: An Introduction to Maximum Principles and Symmetry in Elliptic problems. Cam-
bridge Tracts in Mathematics, vol. 128. Cambridge University Press, Cambridge (2000)

49. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle.
Commun. Math. Phys. 68(3), 209–243 (1979)

50. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin
(2001). Reprint of the 1998 edn., 2001

51. Girão, P., Weth, T.: The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball.
J. Funct. Anal. 237(1), 194–223 (2006)

52. Gladiali, F., Pacella, F., Weth, T.: Symmetry and nonexistence of low morse index solutions in un-
bounded domains. J. Math. Pures Appl. 93, 536–558 (2010)

53. Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear
Anal. 13(8), 879–902 (1989)

54. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics.
Birkhäuser, Basel (2006)

55. Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger
operators. Ann. Math. (2) 121(3), 463–494 (1985). With an appendix by E.M. Stein

56. Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics,
vol. 1150. Springer, Berlin (1985)

57. Kawohl, B.: Instability criteria for solutions of second order elliptic quasilinear differential equations.
In: Partial Differential Equations and Applications. Lecture Notes in Pure and Appl. Math., vol. 177,
pp. 201–207. Dekker, New York (1996)

58. Kawohl, B.: Symmetry or not? Math. Intell. 20(2), 16–22 (1998)
59. Kawohl, B.: Symmetrization—or how to prove symmetry of solutions to a PDE. In: Partial Differential

Equations (Praha, 1998). Chapman & Hall/CRC Res. Notes Math., vol. 406, pp. 214–229. Chapman
& Hall/CRC, Boca Raton (2000)

60. Kesavan, S.: Symmetrization & Applications. Series in Analysis, vol. 3. World Scientific, Hackensack
(2006)

61. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal.
12(11), 1203–1219 (1988)

62. Lin, C.-S., Ni, W.-M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Dif-
fer. Equ. 72(1), 1–27 (1988)

63. Liu, Z., Wang, Z.W.: On the Ambrosetti-Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4,
563–574 (2004)

64. Lopes, O.: Radial and nonradial minimizers for some radially symmetric functionals. Electron. J.
Differ. Equ., pp. No. 03, approx. 14 pp. (1996) (electronic)

65. Lopes, O.: Radial symmetry of minimizers for some translation and rotation invariant functionals.
J. Differ. Equ. 124(2), 378–388 (1996)
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1 Classics

The readers of the Jahresbericht, especially those with some interest in pdes, most
likely know the basics of so called Calderón-Zygmund theory—from now on also
abbreviated as CZ theory. This is, at least in its basic version, a by now classical topic
in the analysis of partial differential equations, which is concerned with determining,
possibly in a sharp way, the integrability and differentiability properties of solutions
to elliptic and parabolic equations in terms of the regularity of the given data. A brief
introduction for the beginner is here outlined in Sect. 1.1 below, that we invite to read
as a first approach to the subject. The point is—and we restrict to the elliptic case to
fix the ideas—that when dealing with an elliptic equation of the type

−div a(x,Du) = μ (1.1)

thanks to the regularization properties of the left hand side operator, the solution u in-
herits the integrability or differentiability properties of the right hand side datum μ. In
a first stage—“the linear age”—such a theory has been widely developed in the case
the equations considered were linear, and the approaches used were largely relying
on linearity via explicit representation formulas and/or linear interpolation methods.
On the other hand, starting by the pioneering work of Tadeusz Iwaniec [52], over the
last years a series of nonlinear results for possibly degenerate operators of the type
in (1.1) has been accumulating, up to the stage that allows us to start talking of a
nonlinear Calderón-Zygmund theory. In this survey we will try to summarize some
of such results.

1.1 Basics

The most classical instance of CZ theory occurs when considering the Poisson equa-
tion

−�u = μ, (1.2)

which for simplicity we shall initially consider in the whole R
n for n > 2. Here μ

is again for simplicity assumed to be smooth and compactly supported, while u is
the unique solution which decays to zero at infinity. The point we will emphasize in
this introductory section is the possibility of getting a priori estimates, from which
regularity results for more general data μ eventually follow via approximation pro-
cedures.

The classical approach—going back to Calderón & Zygmund [29, 30]—to the in-
tegrability properties of solutions to (1.2) goes via a representation formula involving
the so called fundamental solution

u(x) =
∫

G(x,y) dμ(y) (1.3)

where G(·) is the Green’s function

G(x,y) ≈

{
|x − y|2−n if n ≥ 3

log |x − y| if n = 2,
(1.4)



Nonlinear Aspects of Calderón-Zygmund Theory 161

while here we recall that for simplicity we concentrate on the case n > 2. The symbol
≈ denotes a relation of proportionality via a fixed constant whose value is in principle
not relevant for our purposes. The representation formula in (1.3) allows to derive all
the relevant integrability properties of u and its derivatives in terms of those of the
right hand side datum. Let us recall the strategy of the proof.

Definition 1.1 Let β ∈ [0, n); the linear operator defined by

Iβ(μ)(x) :=
∫

Rn

dμ(y)

|x − y|n−β
, (1.5)

is called the β-Riesz potential of μ, where μ is a Borel measure defined on R
n.

By (1.3) we gain the following inequalities:

|u(x)| ≤ |I2(μ)(x)| and |Du(x)| ≤ I1(|μ|)(x), (1.6)

with the second one that has been actually obtained differentiating (1.3). By mean
of the previous inequalities and of the following regularizing property of the Riesz
potential [83]

Iβ : Lγ → L
nγ

n−βγ , γ > 1, βγ < n, (1.7)

we immediately infer the a priori estimate

‖Du‖
L

nγ
n−γ

≤ c‖μ‖Lγ , (1.8)

which holds whenever γ < n. Eventually, estimates like (1.6) and (1.8) extend to
that case when μ ∈ Lγ by approximation arguments. In the case γ = 1 the previ-
ous inequalities clearly fail—think for instance to the case −�u = δ (Dirac measure
charging the origin) where the solution is indeed the Green’s function in (1.4)—and in
order to get an optimal analog we need to recall the notion of Marcinkiewicz spaces,
often called weak Lebesgue spaces.

Definition 1.2 Let t ≥ 1 and let � ⊆ R
n be an open subset; a measurable map w :

� → R
k belongs to Mt (�,R

k) ≡ Mt (�) iff

sup
λ≥0

λt |{x ∈ A : |w| > λ}| =: ‖w‖t
Mt (�) < ∞. (1.9)

These are the right spaces to analyze the case γ = 1—and eventually, especially, the
case when μ is a measure—and indeed we have (see for instance [5, 83])

Iβ : L1 → M
n

n−β , (1.10)

and therefore

‖Du‖
M

n
n−1

≤ c‖μ‖L1 . (1.11)
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Again, the latter inequality immediately extends to the case where μ is a measure by
approximation arguments. The importance of the space Mt also lies in the fact that
it serves to describe in a sharp way the integrability of solutions involving measure
data problems—and therefore L1: typical solutions in such cases are given by the
potential-like functions as |x|−n/t ; note that

|x|−n/t ∈ Mt (B(0,1)) \ Lt(B(0,1)) (1.12)

for every t ≥ 1. In general the following inclusions hold

Lt
� Mt

� Lt−ε for every ε > 0. (1.13)

As for the first relation in (1.13), observe that

|{|w| > λ}| =
∫

{|w|>λ}
dx ≤

∫
{|w|>λ}

|w|t
λt

dx ≤ ‖w‖t
Lt

λt
(1.14)

so that ‖w‖Mt ≤ ‖w‖Lt holds, and in fact the estimation in (1.14) motivates the
definition of Marcinkiewicz spaces.

The analysis of the integrability properties second derivatives requires a further
differentiation of (1.3), indeed differentiating (1.3) twice we arrive at a new represen-
tation formula of solutions to (1.2):

D2u(x) ≈

∫
K(x − y)dμ(y) (1.15)

where now K(·) is a so called Calderón-Zygmund kernel, that is

‖K‖L2 + ‖K̂‖L∞ ≤ B, (1.16)

where K̂(·) denotes the Fourier transform of K(·), and moreover the following (so
called Hörmander) cancellation condition holds:∫

|x|≥2|y|
|K(x − y) − K(x)|dx ≤ B for every y ∈ R

n; (1.17)

here B denotes a certain finite constant. At this point the standard CZ theory of sin-
gular integrals comes into the play: the linear operator μ �→ CZ(μ) defined by

CZ(μ)(x) :=
∫

K(x − y)dμ(y), (1.18)

is bounded from Lγ to Lγ , for every γ ∈ (1,∞). The outcome is the following a
priori estimate for second order derivatives

‖D2u‖Lγ ≤ c‖μ‖Lγ whenever 1 < γ < ∞, where c ≡ c(B). (1.19)

Once again well-known counterexamples show that (1.19) fails for γ = 1.
The basic difference between this case and the one related to the estimates in

(1.8), is that the convolution kernel K(·) appearing in (1.15) is not integrable, and the
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possibility of an estimate as (1.19) is linked to the cancellation properties expressed
by (1.17). This is a sort of paradigm in modern analysis: when size properties—i.e.
integrability—do not suffice then one should look for additional cancellations.

Similar results hold for equations with a right hand side in divergence form of type

�u = divF. (1.20)

In this case similar methods yield the a priori estimate

‖Du‖Lγ ≤ c‖F‖Lγ for every 1 < γ < ∞, where c ≡ c(γ ). (1.21)

Finally, it is worth to remark here that the approach via fundamental solutions and
singular integrals extends also to non-Euclidean settings; for this we refer to the nice
survey [61]. We also refer to the monograph [46] for properties of fundamental solu-
tions to higher order problems.

1.2 More on the Borderline Case γ = 1

When the right hand side of the equation belongs to L1 or it is a measure one cannot
go beyond Marcinkiewicz regularity (1.11). There are anyway intermediate cases al-
lowing to improve such an information to full integrability. A classical one is linked to
so called Hardy spaces, whose functions enjoy some subtle cancellation properties.
We shall not deal with this aspect since such spaces seem to be in this context too
much linked to linear problems. Here the emphasis is on nonlinear ones and we look
for conditions that keep on working in nonlinear cases. The space L logL(�) instead
fits our purposes; with � ⊆ R

n being a bounded domain, L logL(�) is defined as the
set of those functions w satisfying∫

�

|w| log(e + |w|) dx < ∞.

This space, a particularly important instance of what are called Orlicz spaces, be-
comes a Banach space when equipped with the following Luxemburg norm:

‖w‖L logL(�) := inf

{
λ > 0 :

∫
�

∣∣∣w
λ

∣∣∣ log
(

e +
∣∣∣w
λ

∣∣∣) dx ≤ 1

}
< ∞. (1.22)

An obvious consequence of the definition above is the inclusion L logL(�) � L1(�).

As a matter of fact the space L logL is sent into L1 by singular integrals operators
‖CZ(μ)‖L1 � ‖μ‖L logL. As a consequence we have limiting L1-estimates in (1.19)
and (1.20): these turn to

‖Du‖
L

n
n−1

+ ‖D2u‖L1 � ‖μ‖L logL (1.23)

and

‖Du‖L1 � ‖F‖L logL (1.24)
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respectively, while (1.10) turns to Iβ : L logL → L
n

n−β . Ultimately, for the Poisson
equation (1.2) it holds that

μ ∈ L logL =⇒ Du ∈ L
n

n−1 . (1.25)

See for instance [5] and references therein.

2 Nonlinearities

The results in the previous section are concerned with linear equations, and, although
explicit representation formulas as (1.3) are not always an unavoidable tool—for
instance interpolation techniques may be employed as well—all the classical ap-
proaches to CZ theory found till the beginning of the eighties strongly rely on the
linearity of the problems considered. In this section we shall report on the first non-
linear results of Calderón-Zygmund type, mainly referring to possibly degenerate
quasilinear equations of the type (1.1) with p-growth. When p �= 2 the chief model
case is given by the p-Laplacian operator

u → div(|Du|p−2Du) = �pu. (2.1)

In the rest of the paper � ⊂ R
n will denote a bounded, Lipschitz regular domain, and

n ≥ 2; by B(x,R) ⊂ R
n we denote the open ball with radius R > 0, centered at x,

i.e.

B(x,R) := {y ∈ R
n : |x − y| < R}.

When the center will not be relevant we shall simply denote BR ≡ B(x,R). In a sim-
ilar way, we shall denote by QR the general Euclidean hypercube with sidelength
equal to 2R, and sides parallel to the coordinate axes. In the rest of the paper we shall
denote by c, δ, ε etc. general positive constants; we shall emphasize its functional
dependence on the relevant parameters by displaying them in parentheses; for exam-
ple, to indicate a dependence of c on the real parameters n,p, ν,L we shall write
c ≡ c(n,p, ν,L). Finally, according to a standard notation, given a set A ⊂ R

n with
positive measure and a map v ∈ L1(A,R

k), we shall denote by

(v)A := −
∫

A

v(x)dx

its integral average over the set A.

2.1 The Notion of Solution

The general setting we are going to examine concerns nonlinear equations and sys-
tems which in the most general form look like

−div a(x,Du) = H in �, (2.2)
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where a : � × R
Nn → R

Nn is a Carátheodory vector field—and therefore a priori
only measurable with respect to x—satisfying the following strong p-monotonicity
and growth assumptions:⎧⎨

⎩
ν(s2 + |z1|2 + |z2|2) p−2

2 |z2 − z1|2 ≤ 〈a(x, z2) − a(x, z1), z2 − z1〉
|a(x, z)| ≤ L(s2 + |z|2) p−1

2

(2.3)

whenever x ∈ �, z, z1, z2 ∈ R
n where 0 < ν ≤ L. Here we take p > 1, s ≥ 0. When

N = 1 (2.2) reduces to an equation and we are in the scalar case. On the right hand
side of (2.2) we initially assume that H ∈ D′(�,R

N). As we shall see below, as-
sumptions (2.3) are nearly minimal in order to obtain low order regularity results,
such as for instance integrability and continuity results for solutions. When instead
looking for higher regularity results—for instance higher integrability estimates on
Du—we shall need additional regularity on the vector field and we shall for instance
consider the following:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|a(x, z)| + (s2 + |z|2) 1
2 |az(x, z)| ≤ L(s2 + |z|2) p−1

2

ν(s2 + |z|2) p−2
2 |λ|2 ≤ 〈az(x, z)λ,λ〉

|a(x, z) − a(x0, z)| ≤ L1ω (|x − x0|) (s2 + |z|2) p−1
2 ,

(2.4)

whenever x, x0 ∈ �, z,λ ∈ R
Nn where 0 < ν ≤ L and s,L1 ≥ 0. The symbol az

denotes the partial derivative of a(·), and az is again to be assumed Carátheodory
regular, while ω(·) is a modulus of continuity, i.e. a non-decreasing function such
that

lim
R→0

ω(R) = 0.

The previous condition essentially serves to prescribe that the dependence of the
vector field a(·) upon the “coefficients” x is continuous, while the parameter s ≥ 0 is
used to distinguish the case of degenerate ellipticity (s = 0) from the nondegenerate
one (s > 0).

We remark that both assumptions (2.3) and (2.4) are satisfied by the model case
given by

−div
[
γ (x)(s2 + |Du|2) p−2

2 Du
]

= H

with 0 < c1 ≤ γ (x) ≤ c2 < ∞, where γ (·) is a measurable function in the case as-
sumptions (2.3) are considered, and is continuous otherwise; in this case the choice
of ν and L depend on n,p, c1, c2. By taking γ (·) ≡ 1 and s = 0 we obtain in the left
hand side the p-Laplacian operator in (2.1).

Remark 2.1 We emphasize that a crucial difference between assumptions (2.3) and
(2.4) is that in the first case the partial map x �→ a(x, z) is just measurable, while in
the second is assumed to be continuous.
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Remark 2.2 Some of the results we are going to report upon below can be obtained
under assumptions slightly more general than those considered in (2.3)–(2.4). On the
other hand for the sake of simplicity we confine ourselves to present a sample of basic
facts, rather than aiming at the largest possible generality.

To introduce the notion of weak solution we say that a map u ∈ W 1,1(�,R
N) is a

weak solution to (2.2) iff u is such that a(x,Du) ∈ L1(�,R
N) and satisfies

∫
�

〈a(x,Du),Dϕ〉dx = 〈H,ϕ〉 for every ϕ ∈ C∞
c (�,R

N). (2.5)

This definition turns out to be too general, as it will become clear very soon. Therefore
in the following we shall mainly distinguish two situations:

• The first is when H ∈ W−1,p′
, that is the dual of the natural Sobolev space

W
1,p

0 (�,R
N).

In this case standard monotonicity methods apply [66], allowing to find—for
instance when solving a Dirichlet problems—a so called energy solution, that
is a solution belonging to the natural energy space associated to the problem:
u ∈ W 1,p(�,R

N). This is actually the standard situation and solutions are unique
in their Dirichlet class provided strict monotonicity properties, as for instance
(2.3)1, are assumed. For this reason when considering this situation we shall mainly
consider local solutions to (2.5), without specifying the boundary datum.

• The second is when H �∈ W−1,p′
, and it is more delicate.

Indeed in this situation we shall assume that H is in the most general case
a Borel measure μ with finite total mass, while the notion of solution must be
specified more carefully since specific phenomena appear. Solutions that do not
lie in the natural space W 1,p must be also considered, indeed called very weak
solutions.

Remark 2.3 (Abundance of very weak solutions) In general, very weak solutions
may also exist beside usual energy solutions, even for simple linear homogeneous
equations of the type

div (A(x)Du) = 0. (2.6)

Indeed, as shown by a classical counterexample of Serrin [81], for a proper choice
of the strongly elliptic and bounded, measurable matrix A(x), (2.6) admits at least
two distributional solutions solving the same Dirichlet problem on a smooth domain.
One of them belongs to the natural energy space W 1,2, and it is therefore an en-
ergy solution; the other one does not belong to W 1,2, and for this reason in a time
where the concept of very weak solution was not familiar yet, was conceived as a
pathological solution. This situation immediately poses the problem of uniqueness
of distributional solutions. More generally, when restricting to the case of a measure
right hand side, the problem arises to find a function class where unique solvability
is possible.



Nonlinear Aspects of Calderón-Zygmund Theory 167

In the following, when dealing with very weak solutions—that in our case will always
happen when the right hand side datum H does not belong to the dual of W

1,p

0 —
although we shall mainly deal with local regularity results, for the sake of exposition
we shall restrict ourselves to the case of homogeneous Dirichlet problems of the type{−div a(x,Du) = μ in �

u = 0 on ∂�,
(2.7)

with μ being in the most general case a (signed) Borel measure with finite total
mass |μ|(�) < ∞. Non-homogeneous boundary data can be dealt with by standard
reductions, and will not be treated here. Finally, without loss of generality, we shall
assume in what follows that μ is defined on the whole R

n, by eventually letting
μ(Rn \ �) = 0. This situation leads to consider special very weak solutions, called
SOLA, which are described in the next section.

2.2 SOLA

Under assumptions (2.3) with 2 − 1/n < p ≤ n and N = 1 (scalar case) a distri-
butional solution to (2.7) can be obtained by regularization methods as shown in
[17, 18], and this generates a notion of solution called SOLA (Solution Obtained by
Limits of Approximations)—in general they are only very weak solutions. Let us out-
line the strategy, which is on the other hand very natural. One considers solutions
uk ∈ W

1,p

0 (�) to the regularized Dirichlet problems{−div a(x,Duk) = μk in �

uk = 0 on ∂�,
(2.8)

where μk ∈ C∞ can be canonically obtained by smoothing μ via convolution with a
sequence of smooth standard mollifiers {φk}. Actually any smooth sequence {μk} ⊂
C∞ such that μk weakly converges to μ in the sense of measures can be used. The
arguments in [17] lead to establish that there exists u ∈ W

1,p−1
0 (�) such that, up

to a not relabeled subsequence, uk → u in W 1,p−1(�) and (2.7) is solved by u in
the sense of (2.5). The fundamentals of this approach have been given by Boccardo
& Gallouët; we record this fact in the following theorem, which also gives the best
possible regularity in terms of Sobolev spaces:

Theorem 2.1 [14, 17, 18, 32] Under the assumptions (2.3) with 2 − 1/n < p ≤ n,
there exists a SOLA u ∈ W

1,p−1
0 (�) to (2.7). Moreover, it holds that

u ∈ W
1,q

0 (�) for every q <
n(p − 1)

n − 1
. (2.9)

Finally, there exists a unique SOLA when μ ∈ L1(�) or p = 2.

The result in (2.9) is nearly optimal and for this reason SOLA are in general only
very weak solutions; compare with Remark 2.6 below also for the lower bound 2 −
1/n < p. The uniqueness in the case μ ∈ L1 is described for instance in [14, 32] and
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means that by considering a different approximating sequence {μ̄k} converging to μ

in L1(�), we still get the same limiting solution u. The uniqueness of SOLA when μ

is nothing more than a general measure is on the other hand an open problem.

Remark 2.4 (The vectorial case) SOLA to (2.7) always exist by Theorem 2.1 in the
scalar case N = 1 under assumptions (2.3). Existence in the vectorial case N > 1 is
known only in certain special situations, more precisely when an assumption of the
type a(x,Du) = g(x, |Du|)Du is considered. The model case of the p-Laplacian
system is therefore covered and we refer for details to the papers [37, 39]; see also
Theorem 2.7 below.

Remark 2.5 (The superconformal case) We finally notice that the problem in (2.7)
involves a priori only very weak solutions when p ≤ n, otherwise usual energy solu-
tions can be found as well. Indeed, as a consequence of Sobolev embedding theorem,
when p > n then μ ∈ W−1,p′

and we are in the realm of usual energy solutions,
where SOLA coincide with the usual energy solutions.

Remark 2.6 (Again on the notion of solutions) The solutions of Theorem 2.1 for the
measure data case actually satisfy

|Du|p−1 ∈ M
n

n−1 (�) (2.10)

which is an optimal result. Indeed, for p ≤ n the problem{−�pu = δ in B1
u = 0 on ∂B1,

(2.11)

involving the Dirac measure charging the origin on the right hand side, has only one
SOLA, given by what is conventionally called the nonlinear Green’s function

Gp(x) ≈

{
(|x| p−n

p−1 − 1) if 1 < p �= n

log |x| if p = n.
(2.12)

This is the unique solution amongst those obtainable via approximation with non-
negative smooth functions μk—compare [75, Sect. 4.4]. The result in (2.10) now
tells us that Du ∈ L1 iff p > 2 − 1/n, and we see that Gp �∈ W 1,1 when p ≤ 2 − 1/n.
Indeed, the notion of solution must be further changed when p ≤ 2 − 1/n. Moreover,
some of the results below take a different form also in the case 2 − 1/n < p < 2. For
these reasons, in order to keep the presentation at a reasonably non-technical level we
shall always assume

p ≥ 2

when dealing with solutions to (2.7). Many of the results we are going to present
indeed extend readily to the case p > 2 − 1/n and for this we refer to [13, 31, 38].

Summarizing, in the rest of the paper, when considering a right hand side which
does not belong to the dual space W−1,p′

, we shall always consider a problem of
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the type (2.7). In this case u will always be considered as a solution obtained by
approximation—that is a SOLA—according to the scheme described in the lines
above. In the case the right hand side belongs to the dual, we shall consider tradi-
tional energy solutions.

2.3 Weak and Very Weak Solutions

In the following, and for the ease of the reader, we shall distinguish the case when we
shall deal with energy solutions from the one when considering very weak solutions
in specific situations.

Let us consider the equation

−div a(x,Du) = μ. (2.13)

In the case μ ∈ Lγ then by using Sobolev embedding theorem it follows that

γ ≥ np

np − n + p
= (p∗)′ > 1 =⇒ μ ∈ W−1,p′

when p ≤ n (2.14)

and for this reason we shall appeal to (p∗)′ as the duality exponent.
Here p∗ denotes the usual Sobolev embedding exponent given by np/(n − p)

when p < n and (p∗)′ is its conjugate. We shall abuse the notation in so far that when
p = n we are implicitly setting p∗ := ∞ and (p∗)′ = 1.

In the case p > n clearly μ ∈ W−1,p′
for every Borel measure with finite mass,

see also Remark 2.5. Therefore when considering (2.13) and the condition⎧⎪⎨
⎪⎩

1 < γ < (p∗)′ and p ≤ n

or

μ ∈ L1, μ is a measure for p ≤ n

(2.15)

we shall be dealing with SOLA. For reasons explained in Remark 2.7 such cases will
be the significant ones for us in the situation (2.13).

For equations of the type

div a(x,Du) = div(|F |p−2F) (2.16)

i.e. with the right hand side in divergence form, we have that the right hand side
itself belongs to the dual W−1,p′

iff F ∈ Lq for q ≥ p. This is essentially the only
case when a priori estimates for solutions to (2.16) are available; see also Remark 2.8
below. Note that there is no loss of generality in writing the right hand side in (2.16)
in the form displayed. Indeed, any equation of the form

div a(x,Du) = divG (2.17)

can be rewritten in the form in (2.16) by a change of variable; obviously in this
situation the right hand side belongs to the dual space W−1,p′

iff G ∈ Lq with
q ≥ p/(p − 1).
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Remark 2.7 (Reduction to diverge form) Comparing cases (2.13) and (2.16) can be
indeed useful: in the case converse to the one in (2.15) we can reduce problems of the
type (2.13) to those of the type (2.17) and therefore in turn to those of the type (2.16),
and then apply the results known for this case when the right hand side belongs to
the dual. In case of (2.16) with G ≡ |F |p−2F this happens for instance when G ∈ Lq

and q ≥ p/(p − 1). Indeed, such a reduction can be done as follows: with μ being
given, up to an inessential additive constant vector, we can locally solve the equation
the equation divG = μ. At this stage observe that when p > n, whenever γ ≥ 1 this
gives that G ∈ Lq for every q < n/(n − 1) and therefore G ∈ Lp/(p−1). When p < n

and γ ≥ (p∗)′ or when p = n and γ > 1 we have again that G ∈ Lp/(p−1). Therefore,
all in all the situation is as follows: when dealing with a right hand side of the type in
(2.16) a satisfying theory is available only when the right hand side is in the dual of
W

1,p

0 (�), that is F ∈ Lp . For the case below the duality exponent results are instead
available only for the case (2.13), and in this case we consider the situation (2.15);
see also [76].

2.4 The Duality Range

This section is devoted to the case of solutions belonging to the natural Sobolev space
W 1,p , and therefore mainly to the case when the right hand side belongs to the dual
space W−1,p′

. The starting point here is the following natural p-Laplacian analog of
(1.20):

div (|Du|p−2Du) = div (|F |p−2F) for p > 1. (2.18)

The first, fundamental result, has been obtained by Tadeusz Iwaniec, and marks the
beginning of what might be called nonlinear Calderón-Zygmund theory.

Theorem 2.2 [52] Let u ∈ W 1,p(Rn) be a weak solution to (2.18) in R
n. Then

F ∈ Lγ (Rn,R
n) =⇒ Du ∈ Lγ (Rn,R

n) for every γ ≥ p. (2.19)

Remark 2.8 An interesting, and certainly difficult open problem, stems from a com-
parison between the result in the previous theorem and the one described in (1.21).
Indeed, when considering the solutions of the related Dirichlet problem{

div (|Du|p−2Du) = div (|F |p−2F) in �

u = 0 on ∂�,
(2.20)

one could ask for solvability and a priori estimates in Lγ as long as γ > p − 1, with
a related estimate of the type∫

�

|Du|γ dx ≤ c

∫
�

|F |γ dx (2.21)

which is usually referred to as an estimate below the natural growth exponent. Unfor-
tunately, such a result still remains a conjecture [54]. The only progress available is
due to Iwaniec & Sbordone [54] (see also [53]) who proved the solvability of (2.20)
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with an estimate of the type (2.21) for γ > p − ε; c, ε are essentially universal con-
stants depending on n,N and γ1 < γ2 as long as p ∈ [γ1, γ2]. This result, although
still far from covering the full range γ > p − 1, is highly non-trivial, and involves the
use of delicate rigidity properties of the Hodge decomposition.

The local version of Theorem 2.2, involving more general equations, is

Theorem 2.3 Let u ∈ W 1,p(�) be a weak solution to the equation (2.16) in � under
the assumptions (2.4), with p > 1. Then

F ∈ L
γ

loc(�,R
n) =⇒ Du ∈ L

γ

loc(�,R
n) for every γ ≥ p. (2.22)

Moreover, there exists a constant c ≡ c(n,p, γ ) such that for every ball BR ⊆ � with
radius R > 0 it holds that(

−
∫

BR/2

|Du|γ dx

)1/γ

≤ c

(
−
∫

BR

|Du|p dx

)1/p

+ c

(
−
∫

BR

|F |γ dx

)1/γ

. (2.23)

A proof can be adapted from [3, 60]; we remark that in [3] a different approach to
Theorem 2.3 is proposed, by using ideas from [28].

Remark 2.9 It would be interesting to extend Theorem 2.3 to anisotropic operators
of the type considered in [70]. At the moment the only version known is the one
regarding systems with so called p(x)-growth of the type

div(|Du|p(x)−2Du) = div(|F |p(x)−2F) (2.24)

therefore involving a variable growth exponent function p(·). In this setting a result
of the type (2.22) has been proved in [3], under suitable continuity condition of the
function p(x). A higher order problem version has been later obtained in [48]. Op-
erators of the type in (2.24) appear in several models; see for instance [1, 2, 79] and
references therein.

One may of course wonder whether or not results of the type of Theorem 2.3 hold for
general systems—i.e. u takes values in R

N, N > 1 and a : � × R
Nn → R

Nn under
the same assumptions; the answer is obviously no. Indeed, already in the case of
homogeneous systems diva(Du) = 0, we have that minimizers may be unbounded
[84], while a result like Theorem 2.3 would immediately imply their boundedness.
On the other hand it is known that for certain special elliptic systems, satisfying an
additional quasidiagonal structure of the type

a(Du) = g(|Du|)Du, g(|Du|) ≈ |Du|p−2 (2.25)

solutions are as regular as the corresponding scalar equations, this being a funda-
mental result of Uhlenbeck and Ural’tseva [87, 88]. It is therefore natural to look
for a generalization of Theorem 2.3 in the case (2.25), and this has been done by
DiBenedetto & Manfredi [36] in the case of the p-Laplacian system (2.19); in the
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same paper limiting BMO estimates for the gradient are derived as well. See also
[3] for more general vectorial cases. A further interesting extension of Theorem 2.3,
valid for equations with possibly discontinuous coefficients of VMO type, has been
obtained by Kinnunen & Zhou [60]; see also [25] for a global result on rough do-
mains. This means that coefficients, instead of being continuous, are only assumed to
show a controlled type of discontinuity, described in an integral way. More precisely,
whenever v is an integrable map, one defines

ωv(R) := sup
B
,
≤R

−
∫

B


|v − (v)B
 |dx, (v)B
 := −
∫

B


v dx,

where the supremum is take over all possible balls in the domain. Then one says that
v is VMO-regular iff

lim
R→0

ωv(R) = 0. (2.26)

Notice that in the case v is continuous ωv(·) is dominated by the usual modulus of
continuity of v defined by

ω̃v(R) := sup
x,y∈�,|x−y|≤R

|v(x) − v(y)|,

and in this sense VMO-regularity generalizes (uniform) continuity.
Finally, results in the same spirit of Theorem 2.3 have been obtained in [21] for

related obstacle problems: here it is the integrability of the obstacle function which
governs the one of solutions.

Now, while on one hand for general elliptic systems there is no hope to get a full
CZ theory in the style of Theorem 2.3, on another one something still remains. More
precisely, Theorem 2.3 still holds when γ is not too large and indeed we have the
following:

Theorem 2.4 [63] Let u ∈ W 1,p(�,R
N) be a weak solution to the system (2.16) in

� under the assumptions (2.4) with p > 1. Then there exists δ ≡ δ(n,N,p,L/ν) > 0
such that (2.22) and (2.23) hold provided

p ≤ γ < p + 2p

n − 2
+ δ when n > 2, (2.27)

while no upper bound is prescribed on γ in the two-dimensional case n = 2.

It is worth remarking here that the results as the previous one play a crucial role in
deriving certain improved bounds on the Hausdorff dimension of the singular sets of
vectorial problems [62, 63, 71–73] and in the analysis of their boundary regularity
[40, 64, 65].

We close this section by mentioning a few parabolic counterparts of the above
results, since in the evolutionary case there are several substantial differences coming
up. The model case here is again the evolutionary p-Laplacian equation/system:

ut − div (|Du|p−2Du) = div (|F |p−2F). (2.28)
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All the parabolic problems in the following, starting with (2.28), will be considered
in the cylindrical domain �T := � × (0, T ), where, as usual, � ⊂ R

n is a bounded
Lipschitz domain and T > 0.

The extension of the elliptic nonlinear CZ theory in the sense of Theorem 2.3 to
the parabolic case has remained an open problem since [52] until it has been settled,
both in the vectorial and in the scalar case, in [4]. The reason is that the proof of the
elliptic results strongly relies on the use of Harmonic Analysis tools such as maximal
and sharp maximal operators, an approach which cannot at all be carried over to
the case of (2.28) for p �= 2. This is deeply linked to the fact that the homogeneous
system

ut − div (|Du|p−2Du) = 0 (2.29)

locally follows an intrinsic geometry dictated by the solution itself. This is essentially
DiBenedetto’s approach to the regularity of parabolic problems [35] that we are going
to briefly outline. The cylinders on which the system (2.29) enjoys good a priori
estimates—we consider p ≥ 2 for simplicity—are of the type

Q̃ = Qz0(λ
2−pR2,R) ≡ BR(x0) × (t0 − λ2−pR2, t0 + λ2−pR2),

where z0 ≡ (x0, t0) ∈ R
n+1 and the main point is that λ is required to satisfy a relation

of the type ∫
Qz0 (λ2−pR2,R)

|Du|p ≈ λp. (2.30)

The last line says that Qz0(λ
2−pR2,R) is defined in an intrinsic way, and therefore in

the terminology of [35] is called an intrinsic cylinder. It is actually the main core of
DiBenedetto’s ideas to show that such cylinders can be constructed and used to prove
regularity: on such a cylinder, roughly speaking, equations as (2.29) re-homogenize
and behave like the heat equation up to an extent which is sufficient to prove the
desired regularity. Now the point is very simple: since the cylinders as Q̃ depend on
the size of the solution itself, it is not possible to associate to them, and therefore to the
operator (2.29), a universal family of cylinders—that is independent of the solution
considered. In turn this rules out the possibility of using parabolic type maximal
operators but for the case p = 2.

In the paper [4] this obstruction has been overcome by introducing a completely
new technique which bypasses the use of maximal operators, providing the first Har-
monic Analysis-free, purely pde proof of nonlinear CZ estimates. This technique in
turn allows to give a new, Harmonic Analysis-free approach to all the previous elliptic
results, see for instance [24]. Indeed in [89] even a new, elementary and interpolation-
free proof of the classical Calderón-Zygmund theorem on the Lp-boundedness of
singular integrals has been given adapting the techniques of [4].

Theorem 2.5 [4] Let u ∈ C(0, T ,L2(�,R
N)) ∩ Lp(0, T ,W 1,p(�,R

N)) be a weak
solution to the parabolic system (2.28), where � is a bounded domain in R

n, and

p >
2n

n + 2
. (2.31)
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Then

F ∈ L
γ

loc(�T ,R
Nn) =⇒ Du ∈ L

γ

loc(�T ,R
Nn) for every γ ≥ p. (2.32)

Here Du denotes the spatial gradient of u.

For reasons which are by now well-understood in the theory of degenerate parabolic
problems, lower bounds as (2.31) are essential to get results as the previous one; we
refer to [35] for further discussion and counterexamples.

The result of Theorem 2.5 readily extends to all parabolic equations of the type

ut − div a(x, t,Du) = div (|F |p−2F),

with the vector field a : � × (0, T ) × R
n → R

n being such that the partial map
(x, z) �→ a(x, ·, z) is satisfying assumptions as (2.4). It is worth to be mentioned that
in order to prove a result as in (2.32) no continuity condition is required with respect
to the time variable: the partial map t �→ a(x, t, z) can be assumed to be just mea-
surable and for this we refer to [44], where some extensions of the results of [4] are
also proposed. Further non-trivial extensions of Theorem 2.5 are contained in [21],
where parabolic variational inequalities are considered, and again in [44, 80], where
parabolic versions of Theorem 2.4 are included.

As already in the elliptic case, one could again wonder whether it is possible to
extend the result of (2.32) below the natural growth exponent and taking γ > p − 1.
A progress in this direction is in the important papers [58, 59], where the case γ ∈
(p − ε,p + ε) of (2.32) is examined for a small ε > 0. Higher order versions of the
results can be found in [19, 20].

2.5 The Subdual Range

In this section we deal with problems as in (2.7), where we assume that the right
hand side does not need to belong to the dual space W−1,p′

. In particular, when
considering (2.13) we shall assume condition (2.15) and we therefore shall treat the
case of gradient estimates below the duality exponent [76], with special emphasis on
the case when μ is nothing more that a Borel measure with finite mass. Recall that the
case γ ≥ (p∗)′ with p ≤ n and γ > 1 can be dealt with via Theorem 2.3, as pointed
out in Remark 2.7. We shall deal with SOLA, and keeping Remarks 2.5–2.6 in mind,
we shall restrict to the case 2 ≤ p ≤ n in order to simplify the exposition.

The fundamentals of the CZ theory for the subdual case have been established by
Boccardo & Gallouët and it holds the following:

Theorem 2.6 [17, 18] Under the assumptions (2.3) with 2 ≤ p ≤ n, every SOLA
u ∈ W

1,p−1
0 (�) to (2.7) is such that

|Du|p−1 ∈ M
n

n−1 (�) when μ is a Borel measure with finite mass, (2.33)

|Du|p−1 ∈ L
n

n−1 (�) when μ ∈ L logL(�), (2.34)
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and

|Du|p−1 ∈ L
nγ

n−γ (�) when μ ∈ Lγ (�), 1 < γ ≤ (p∗)′ and p < n.

The delicate, conformal case p = n—when Du ∈ Mn—has been actually established
in [39] (it was indeed left as an open problem in [13]), while another approach to this
case, together with explicit local estimates, has been proposed in [74], see Theo-
rem 2.8 below. Related estimates were obtained in certain situations in the works
[51, 68], where fine properties of solutions are also studied in the context of what is
usually called nonlinear potential theory.

A theory for a class of elliptic systems satisfying for instance assumption (2.25) is
also available. For instance it holds the following:

Theorem 2.7 [37, 39] Let 2 ≤ p ≤ n; given a Borel measure with finite total mass on
� there exists a SOLA u ∈ W

1,p−1
0 (�,R

N) to the p-Laplacian system with measure
data

−div (|Du|p−2Du) = μ in �

such that |Du|p−1 ∈ M
n

n−1 (�).

See also [45] for an earlier result in model case (2.11).
The results of the last two theorems are sharp—see for instance the discussion in

Remark 2.6—and are the nonlinear analog of the linear estimates (1.8), (1.11) and
(1.25). In particular, the sharpness of the result in (2.33) can be tested by looking at
the nonlinear fundamental solution in (2.12). When looking at the case where μ is
a measure, there is an interesting phenomenon here. The result in (2.33) is actually
sharp only when the measure, in a certain sense, concentrates on points. The principle
is that the more the measure concentrates, the less integrable is the solution found,
while if the measure diffuses, the integrability improves. This is made rigorous in the
following theorem.

Theorem 2.8 [74] Under the assumptions (2.3) with 2 ≤ p ≤ n, assume also that the
measure μ satisfies the density condition

|μ|(BR) ≤ cRn−θ , p ≤ θ ≤ n (2.35)

for every ball BR ⊂ R
n with radius R. Then every SOLA u ∈ W

1,p−1
0 (�) to (2.7) is

such that

|Du|p−1 ∈ M
θ

θ−1
loc (�). (2.36)

The previous result is also sharp, as shown by the examples in [82]. Note that (2.35)
implies that the measure cannot concentrate on sets with Hausdorff dimension smaller
than n − θ ; in particular, the Dirac measure case is excluded as soon as θ < n. More-
over, when θ < n the gradient integrability in (2.36) is always better that the one
in (2.33), while (2.36) reduces to (2.33)—up to localization—when θ = n. The re-
striction p ≤ θ is natural; indeed when θ < p, a measure satisfying (2.35) belongs
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to the dual space W−1,p′
and this case falls in the realm of standard monotonicity

methods that in turn provide standard energy solutions u ∈ W
1,p

0 (�). Of particular
interest is the borderline case θ = p, which gives Du ∈ Mp

loc, and connects to the
aforementioned dual case θ < p, when Du ∈ Lp . For more results involving den-
sity conditions, as well as for other borderline cases of Marcinkiewicz and Lorentz
spaces, we refer to [76].

Theorems 2.6, 2.7 and 2.8 give optimal regularity results in terms of gradient in-
tegrability. On the other hand equations of the type (2.7)1 involve a second order
operator, and therefore it is natural to ask whether or not the gradient of solutions
enjoy higher regularity properties as for instance higher differentiability. This indeed
happens when the right hand side μ is for instance a smooth function. One obstruc-
tion is given by the fact already in the case �u = μ ∈ L1 we have that in general
Du �∈ W 1,1. The approach presented in [74] bypasses this fact by means of the use of
fractional Sobolev spaces, and shows that although Du �∈ W 1,1, we still have that Du

is differentiable with every degree less than one. Let us recall a few definitions.

Definition 2.1 For a bounded open set A ⊂ R
n and k ∈ N, parameters σ ∈ (0,1)

and q ∈ [1,∞), the fractional Sobolev space Wσ,q(A,R
k) is defined requiring that

w ∈ Wσ,q(A,R
k) iff the following Gagliardo-type norm is finite:

‖w‖Wσ,q(A) :=
(∫

A

|w(x)|q dx

)1/q

+
(∫

A

∫
A

|w(x) − w(y)|q
|x − y|n+σq

dx dy

)1/q

.

To view the previous definition in a more intuitive way, the reader may think of Wσ,q -
functions as those function having “derivatives of order σ ”, in turn integrable with
exponent q . Roughly writing, this means

[w]q
σ,q;A :=

∫
A

∫
A

|w(x) − w(y)|q
|x − y|n+σq

dx dy ≈

∫
A

|Dσ w|q dz 0 < σ < 1. (2.37)

In order to get higher regularity for Du it is therefore natural to require more regu-
larity of the vector field a(·), and we shall therefore consider assumption (2.4) rather
than (2.3). Moreover, we shall consider an unavoidable—for the type of results even-
tually derived—Lipschitz regularity assumption on x �→ a(x, z):

ω(R) ≤ R. (2.38)

Theorem 2.9 [74] Under the assumptions (2.4) with 2 ≤ p ≤ n and (2.38) every
SOLA u ∈ W

1,p−1
0 (�) to the problem (2.7) is such that

Du ∈ W
1−ε
p−1 ,p−1

loc (�,R
n) for every ε > 0. (2.39)

In particular, when p = 2 it holds that

Du ∈ W
1−ε,1
loc (�,R

n) for every ε > 0. (2.40)
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This result essentially provides what should be considered as the maximal regularity
for measure data problems. In the realm of Sobolev spaces the sharpness of (2.40)
has already been discussed, but in general (2.39) is always sharp too. Indeed, let us
recall that the Sobolev embedding in the fractional spaces gives

W
σ,q

loc ↪→ L
nq/(n−σq)

loc provided σq < n

(see for instance [6]). Therefore assuming that Du ∈ W
1/(p−1),p−1
loc would imply

|Du|p−1 ∈ L
n/(n−1)

loc , which is on the other hand impossible as the nonlinear Green’s
function Gp in (2.12)—i.e. the unique SOLA to (2.11)—does not enjoy such an inte-
grability property. We only remark that non-integer differentiability exponents as in
(2.39) are typical of problems with p-growth, especially in the degenerate case; see
for instance [71]. A parabolic version of Theorem 2.9 has been recently given in [11],
and as a corollary implies some of the results of [16].

Remark 2.10 (Fully nonlinear equations) The results presented in this section con-
cern the divergence form case (3.5). A very deep, nonlinear Calderón-Zygmund the-
ory for fully non linear problems of the type

F(x,D2u) = μ (2.41)

is available, being a fundamental contribution of Caffarelli—see [26, 27]. For obvi-
ous reasons the phenomena and the techniques involved for the case (2.41), where
solutions are to be understood in the viscosity sense, are quite different from the di-
vergence form/variational case (1.1), where distributional solutions can be used. For
this reason we do not touch the theory available for operators of the type (2.41). An
advantage of divergence form problems as (1.1) is given by the fact that results do
exist also for systems, while in the case (2.41) the theory is strictly scalar, since there
has not been found any suitable vectorial analog of the concept of viscosity solution
up to now. A bridge between the viscosity methods and quasilinear structures has
been anyway built in [28], a paper that eventually inspired the proof of many results
for divergence form operators, see for instance [3, 25].

3 Pointwise Estimates and Consequences

In the previous section we have seen how Theorem 2.6 extends the classical linear
regularity results (1.8), (1.11) and (1.25) to the nonlinear setting. While the latter
actually follow from the pointwise representation formulas (1.6), the original proofs
for Theorem 2.6 make only use of integral estimates. At a first sight, it would appear
impossible to get an analogue of the more stringent estimates (1.6) in the nonlinear
case, since representation formulas are very much linked to the specific structure of
the equation. The aim of this section is to report on a series of results that instead
show that pointwise estimates in terms of potentials hold for nonlinear problems too.
We remark that for the ease of exposition in this section we again restrict to the
superquadratic case p ≥ 2.
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Since we are going to deal with local results, we need a suitable, truncated version
of the classical Riesz potentials defined in (1.5), that is

Iμ
β (x,R) :=

∫ R

0

μ(B(x,
))


n−β

d




, (3.1)

and we note that the inequality Iμ
β (x,R) � Iβ(μ)(x) holds whenever μ is a non-

negative measure. Now, although estimates (1.6) could be still possible for nonlinear
equations of the type (2.7)1 when p = 2, they certainly do not hold when p ≥ 2 since
they clearly do not respect the homogeneity properties of the equation. Indeed, if we
consider a solution to div (|Du|p−2Du) = μ with p �= 2, we see that ũ = c1/(p−1)u—
and not cu—solves div (|Dũ|p−2Dũ) = cμ for c �= 0. Therefore, in order to hope
for a nonlinear analog of relations (1.6) we need to consider a suitable family of
nonlinear potentials, which encode in their structure the peculiar scaling of equations
of p-Laplacian type.

Definition 3.1 Let μ be Borel measure with finite total mass on R
n; the nonlinear

Wolff potential is defined by

Wμ
β,p(x,R) :=

∫ R

0

( |μ|(B(x,
))


n−βp

)1/(p−1)
d




, β ∈ (0, n/p] (3.2)

whenever x ∈ R
n and 0 < R ≤ ∞.

We immediately notice that for a suitable choice of the parameter β,p Wolff poten-
tials reduce to Riesz potentials, i.e. Iμ

β ≡ Wμ
β/2,2. Wolff potentials play a crucial role

in nonlinear potential theory and in the description of the fine properties of solutions
to nonlinear equations in divergence form; for this we refer to [7, 8] and in particular
to the famous paper by Hedberg & Wolff [50].

An important fact about Wolff potentials is that their behavior can be in several
aspects recovered from that of Riesz potentials. Indeed, the following pointwise in-
equality holds:

Wμ
β,p(x,∞) ≤ cIβ

{[
Iβ(|μ|)]1/(p−1)

}
(x) =: cVβ,p(|μ|)(x). (3.3)

The nonlinear potential Vβ,p(μ)(x0) appearing in the right hand side of the previ-
ous inequality—often called the Havin-Maz’ya potential of μ—is a classical object
in nonlinear potential theory, and together with the bound (3.3) comes from the pio-
neering work of Adams & Meyers and Havin & Maz’ya; see also [7, 8, 49]. Estimate
(3.3) allows to derive all types of local estimates starting by the properties of the
Riesz potential.

The first fundamental result connecting Wolff potentials to solutions of nonlinear
equations in divergence form is due Kilpeläinen & Malý [57]; another approach has
been later offered by Trudinger & Wang [86].

Theorem 3.1 [63, 86] Let u ∈ C0(�) ∩ W 1,p(�) be a weak solution to (1.1), un-
der the assumptions (2.3) with 2 ≤ p ≤ n, where μ is a Borel measure with finite
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total mass. Then there exists a constant c ≡ c(n,p, ν,L) > 0 such that the pointwise
estimate

|u(x)| ≤ c −
∫

B(x,R)

(|u| + Rs)dy + cWμ
1,p(x,R) (3.4)

holds whenever B(x,R) ⊆ �.

See also [42] for yet another proof; note that for p = 2 we have that Wμ
1,p ≡ I|μ|

2 and
we recover a local analog of the first estimate in (1.6). Theorem 3.1 allows, amongst
other things, to recover in a local way all the integrability results known for u via
the properties of the Wolff potentials—see also (3.3). Moreover, several applications
have been given: the proof of a boundary Wiener criterion for nonlinear equations
[63] is a major instance. Applications to the solvability equations with right hand
side with critical growth [78] are another important one.

Remark 3.1 For the sake of clarity, since it is our aim to emphasize on the regularity
aspect, in this section we are presenting all the results in the form of a priori estimates
for more regular solutions, u ∈ C0,C1 or the like. In turn, such estimates allow, via
the usual approximation arguments for instance described in Sect. 2.1, to recover
estimates for SOLA, or for all the other kinds of solutions considered in the literature
when the right hand side is not the dual of W

1,p

0 ; see for instance the discussion in
[42, 51, 63].

The possibility of extending pointwise potential estimates to the gradient has re-
mained an open issue discussed rather intensively for a long while, and an answer
came only recently. The first result in this direction is contained in [77] and is due to
the author of this paper. Indeed, in [77] a precise local analog of the second estimate
in (1.6) has been given; an announcement of the result already appears in [41]. We
start by the simplest case, namely we consider the equation

−diva(Du) = μ (3.5)

under the assumptions

ν|λ|2 ≤ 〈∂a(z)λ,λ〉, |a(0)| + |∂a(z)| ≤ L, (3.6)

with the same notation of (2.4). The result is

Theorem 3.2 [77] Let u ∈ C1(�) be a solution to (3.5), under the assumptions (3.6),
with μ being a Borel measure with finite total mass. Then there exists a constant
c ≡ c(n, ν,L) such that whenever ξ ∈ {1, . . . , n} the pointwise estimate

|Dξu(x)| ≤ c −
∫

B(x,R)

|Dξu|dy + cI|μ|
1 (x,R) (3.7)

holds whenever B(x,R) ⊆ �.
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A proof of it will be outlined in the next section. The extension to the case p ≥ 2
involves nonlinear Wolff potentials, and works under the natural assumptions in (2.4),
together with a Dini regularity condition on the coefficients x �→ a(x, z). Indeed,
when considering (2.4) in this case we shall assume that∫

0
[ω(
)]2/p d




< ∞. (3.8)

Theorem 3.3 [42] Let u ∈ C1(�) be a weak solution to (1.1) under the assumptions
(2.4) with p ≥ 2 and (3.8) being enforced, where μ is a Borel measure with finite
total mass. Then there exists a constant c ≡ c(n,p, ν,L,L1,ω(·)) > 0 such that the
pointwise estimate

|Du(x)| ≤ c −
∫

B(x,R)

(|Du| + s) dy + cWμ
1/p,p(x,R) (3.9)

holds whenever B(x,R) ⊆ �.

An interesting fact is that, when applied to the the model case equation

−div(|Du|p−2Du) = μ, (3.10)

Theorem 3.3 allows to give a unified approach to all the gradient integrability esti-
mates of the papers [10, 17, 18, 36, 39, 52, 53, 85]. Indeed, although in such papers
more general assumptions are considered—for instance vectorial cases and measur-
able coefficients are also allowed in some of them—an ad hoc technique had to be
developed in every case according to the type of regularity in question, while here the
single estimate (3.9) suffices to catch all types of regularity results, both for energy
solutions (higher regularity) and very weak ones (low regularity). In particular, The-
orem 2.6 follows as a corollary for the model case (3.10), together with a series of
refined borderline cases which had remained as an open issue. For instance, border-
line cases of estimates in Marcinkiewicz and Lorentz spaces follow as corollary:

μ ∈ M(p∗)′
loc =⇒ Du ∈ Mp

loc p ≤ n (3.11)

and this—as well as [76, Theorem 2]—settles a delicate open problem raised several
times in the literature [10, 15, 56] (the only result available was for the case p = n,
were Du ∈ Mn and it has been settled in [39]). We note that the result in (3.11) is
delicate since it is exactly the borderline case between the dual and the subdual range;
compare with the discussion in Sect. 2.3 and recall (2.14). Finally, since estimate (3.9)
is pointwise, sharp local integral estimates follow, whereas they did not seem to be
easily achieved with the global methods developed earlier.

We note that a Dini type continuity requirement of the type in (3.8) is actually
unavoidable in that even in the case of a plain linear equation as

div(A(x)Du) = 0
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solutions are not Lipschitz if the elliptic matrix A(x) has just continuous-but-not-
Dini-continuous entries [55]. Moreover, the degree of preciseness of estimate (3.9)
can be measured observing that in the case of the problem (2.11) we have that

−
∫

B(x,R)

|Du|dx + Wδ
1/p,p(x,R) ≤ c|Du(x)|

holds for a suitable constant c, whenever |x| = R > 0; see [42, Remark 6.2].

Remark 3.2 We anyway stress that the primary significance of Theorems 3.2 and
3.3 relies in showing that pointwise gradient potential estimates are in fact possible,
something which was even believed to be false by some experts in nonlinear potential
theory.

The techniques for proving Theorem 3.3 actually open the way to finer results
for establishing gradient continuity properties. Indeed, assuming for instance that
Wμ

1/p,p ∈ L∞ then (3.9) implies that Du is locally bounded (here we are not talking
about a priori regular solutions of course). In this situation we note that, by the very
definition of Wolff potential and the absolute continuity of the integral the following
converge:

lim
R→0

Wμ
1/p,p(x,R) = lim

R→0

∫ R

0

[ |μ|(B(x,
))


n−1

]1/(p−1)
d




= 0 (3.12)

holds almost everywhere and equiboundedly. Something more can be said if (3.12)
holds in a stronger sense:

Theorem 3.4 [43] Let u ∈ W
1,p

loc (�) be a weak solution to (1.1) under the assump-
tions (2.4) with p ≥ 2 and (3.8) being enforced, where μ is a Borel measure with
finite total mass. Assume that the convergence in (3.12) holds locally uniformly in �;
then Du is continuous.

Remark 3.3 By a well-known theorem of Hedberg & Wolff [50] the validity of the
inequality ∫

�

Wμ
1,p(x,1) d|μ|(x) < ∞ (3.13)

is sufficient to deduce that μ belongs to the dual of W
1,p

0 (�) and therefore it is not

restrictive to consider usual energy solutions u ∈ W
1,p

loc (�) in Theorem 3.4, without
involving SOLA. Indeed, note that (3.13) is obviously implied by Wμ

1/p,p ∈ L∞.

Theorem 3.4 tells that a threshold between gradient boundedness and gradient con-
tinuity can be established by the rate of convergence to zero of Wolff potentials,
and this in turn allows us to derive a series of borderline cases for gradient continu-
ity. We hereby mention a couple of them. A well-known result of Lieberman [67]
states that if the right hand side measure satisfies a density condition of the type
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|μ|(BR) ≤ cRn−1+ε for some ε > 0 then the gradient is continuous. A borderline
case of this result now follows as a consequence of Theorem 3.4: If the measure
satisfies |μ|(BR) ≤ cRn−1h(R) and∫

0
[h(
)]1/(p−1) d




< ∞

then Du is continuous. From Lieberman’s result it easily follows that

μ ∈ Ln+ε for some ε > 0 =⇒ Du is continuous. (3.14)

At this point Theorem 3.4 also provides borderline continuity results in the frame-
work of rearrangement invariant function spaces. It is the right moment to recall
the definition of the so called Lorentz spaces L(t, q)(�), with 1 ≤ t < ∞ and
0 < q ≤ ∞. When q < ∞ a measurable map g belongs to L(t, q)(�) iff

‖g‖q

L(t,q)(�) := q

∫ ∞

0

(
λt |{x ∈ � : |g(x)| > λ}|)q/t dλ

λ
< ∞. (3.15)

For q = ∞ Lorentz spaces are defined as Marcinkiewicz spaces L(t,∞)(�) ≡
Mt (�) which have been already introduced in Definition 1.2 (let formally q → ∞
in (3.15)). The local variant of such spaces is then obtained by saying g ∈ L(t, q)(�)

locally iff g ∈ L(t, q)(�′) whenever �′ � � is a subset. Lorentz spaces are in most
of the cases Banach spaces—for instance when t > 1 or when t = q = 1—when
equipped with a norm essentially equivalent to the quantity in (3.15) [83, Theo-
rems 3.21–3.22]. The spaces L(t, q)(�) “decrease” in the first parameter t , while
they increase in q . Moreover, they “interpolate” Lebesgue spaces as the second pa-
rameter q “tunes” t in the following sense: whenever 0 < q < t < r ≤ ∞ we have,
with continuous embeddings, that the following strict inclusion hold:

Lr ≡ L(r, r) ⊂ L(t, q) ⊂ L(t, t) ⊂ L(t, r) ⊂ L(q, q) ≡ Lq. (3.16)

A particular case of the last relations was already given in (1.13). Useful references
for Lorentz spaces are for instance [47, 83]. To have a closer feeling on what kind of
growth conditions Lorentz spaces are bound to describe, it could be useful to observe
that a function as

1

|x|n/t logβ |x|
with 1 ≤ t < n and β > 0, belongs to L(t, q)(B(0,1)) provided q > 1/β . Compare
this with (1.12).

A borderline case of (3.14) can be now stated via Lorentz spaces, and it is a less
immediate consequence of Theorem 3.4:

Theorem 3.5 [43] Let u ∈ W
1,p

loc (�) be a weak solution to (1.1) under the assump-
tions (2.4) with p ≥ 2 and (3.8) being enforced. Assume that μ ∈ L(n,1/(p − 1))(�)

locally; then Du is continuous.
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In fact the proof of the previous theorem relies on the fact that when μ ∈ L(n,1/(p −
1))(�) then the convergence in (3.12) holds locally uniformly in �. The previ-
ous result is a borderline condition of (3.14) in that by (3.16) we have Ln+ε ⊂
L(n,1/(p − 1)) whenever ε > 0.

We close this section with a non-local version of the gradient estimate of Theo-
rem 3.3. The point is now the following: when switching from Theorem 3.1 to The-
orem 3.3 we pass from assumptions (2.3) to (2.4). The main difference here is not
only in the differentiability of the vector field a(·) with respect to the gradient vari-
able, but mainly in the fact that in (2.4) we assume a continuous rather than just a
measurable dependence on the coefficients x. The main model we have in mind here
is the p-Laplacian equation with coefficients given by −div(γ (x)|Du|p−2Du) = μ.
It is traditionally an important point in regularity—since the pioneering paper of De
Giorgi [33]—proving results for equations with merely measurable coefficients. It is
clear that an estimate as (3.9) cannot hold under assumptions (2.3), as in this case
the maximal gradient regularity of solutions to equations as diva(x,Du) = 0 is in
general only given by

Du ∈ Lp+δ (3.17)

for some δ > 0. This is essentially a consequence of Gehring’s lemma and δ ≡
δ(n,p, ν,L) is a universal exponent depending only on the ellipticity properties of
the operator; see [23]. On the other hand something remains; more precisely a non-
local version of estimate (3.9) still holds yielding level sets information rather than
a pointwise one. Moreover, such an estimate is bound to provide regularity results
in accordance to the maximal gradient regularity in (3.17), in that it will provide in
the best possible case gradient estimates in Lq with q < p + δ, where δ is exactly
the exponent in (3.17) given by Gehring’s lemma. Before stating the result we need
to recall a few facts. We recall the definition of the (restricted) fractional maximal
function operator relative to a cube Q0 ⊆ R

n; this is defined as

M∗
β,Q0

(g)(x) := sup
Q⊆Q0, x∈Q

|Q|β/n −
∫

Q

|g(y)| dy, β ∈ [0, n), (3.18)

where the sup is taken with respect all the cubes Q contained in Q0; all the cubes here
have sides parallel to the coordinate axes. A similar definition can be given when g

is replaced by a measure in an obvious way. When β = 0 this is essentially a local
variant of the classical Hardy-Littlewood operator; in this case we shall abbreviate
M∗

β,Q0
≡ M∗

Q0
.

Theorem 3.6 [76] Let u ∈ W 1,p(�) be a weak solution to (1.1) under the assump-
tions (2.3) with p ≥ 2, where μ with a Borel measure with finite total mass. Let
Q2R � � be a cube and let M∗ ≡ M∗

Q2R
denote the restricted maximal operator with

respect to Q2R . There exist constants δ ≡ δ(n,p,L/ν) > 0 and A ≡ A(n,p,L/ν) >

1 such that: For every T > 1 there exists ε ≡ ε(n,p, ν,L,T ) ∈ (0,1) such that∣∣∣{x ∈ QR : M∗((|Du| + s))(x) > AT λ
}∣∣∣

≤ T −(p+δ)
∣∣∣{x ∈ QR : M∗((|Du| + s))(x) > λ

}∣∣∣
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+
∣∣∣{x ∈ QR : Wμ

1/p,p(x,2
√

nR) > ελ
}∣∣∣ (3.19)

holds whenever

λ ≥ c(n)T p+δ −
∫

Q2R

(|Du| + s) dx.

The previous result, although not explicitly stated in [76], is anyway implicit in the
proof of [76, Theorem 11], and can be obtained by a different choice of the parameters
and of the dyadic cubes used there. Inequality (3.19) roughly tells that “up to a Lp+δ-
correction” given by the level set appearing in the intermediate line of (3.19), the level
sets of M∗((|Du|+ s)), and therefore those of |Du| in QR , are controlled by the level
sets of Wμ

1/p,p . In turn this implies a local control of the norm ‖Du‖X in terms of

‖Wμ
1/p,p‖X in virtually every rearrangement invariant function space X strictly larger

than Lp+δ (roughly: rearrangement invariant function space are all those function
spaces the membership to is determined by measuring the decay of the measure of the
level sets of the functions; Lebesgue, Lorentz, and Orlicz spaces belong to this class).
The use of the restricted maximal operator allows to obtain a suitable localization of
the estimates.

Remark 3.4 An interesting fact of Theorem 3.6 is that it refers to a structural/universal
regularization property of the class of operators in question

u �→ −diva(x,Du). (3.20)

Indeed, the exponent δ > 0 in Theorem 3.6 is exactly the one given by Gehring’s
lemma and describing the maximal gradient regularity of solutions to homogeneous
equations asserted in (3.17). As already mentioned this exponent only depends on the
structural monotonicity properties of the vector field a(·) described in (2.3), that is on
the parameters n,p, ν,L. In other words, Theorem 3.6 also refers to a certain rigidity
properties of the regularity theory involving the operator in (3.20).

The following sharp regularity result is now one of the possible consequences of
Theorem 3.6 in that Lp+δ ⊂ L(p,q(p − 1)) for every q > 0.

Theorem 3.7 [76] Assume that (2.3) holds with 2 ≤ p < n, and 0 < q ≤ ∞, μ ∈
L1(�) and let u ∈ W

1,p−1
0 (�) be the unique SOLA to the problem (2.7). It holds that

μ ∈ L
(
(p∗)′, q

) =⇒ Du ∈ L(p,q(p − 1)) locally in �. (3.21)

The result in (3.11) is actually a particular case of (3.21)—take q = ∞; as already
indicated after (3.11), the implication in (3.21) is very delicate since the spaces in-
volved let the problem “oscillate” around the dual/subdual case (the previous result
implies that solutions are energy one when q ≤ p′, and very weak otherwise). Again,
Theorem 3.7 solves a problem raised several times before in the literature [10, 15, 56],
which could not be solved for instance via rearrangement techniques that cover the
case μ ∈ L(t, q) only for t < (p∗)′—immediately covered also by Theorem 3.6—and
cannot moreover achieve local regularity (see for instance [9, 10]).
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Remark 3.5 A stronger version of (3.19) holds in that we may replace Wμ
1/p,p by the

1-fractional maximal operator [M∗
1,Q2R

(μ)]1/(p−1).

Remark 3.6 (Parabolic pointwise estimates) Some of the results presented in this
section have already seen a few extensions to the parabolic case as long as the case
p = 2. For a parabolic version of Theorems 3.1 and 3.3 we again refer to [42] while
for a version of Theorem 3.6 we refer to [12].

Remark 3.7 Further extensions of the potential estimates of Theorem 3.1 and 3.3 are
possible and are concerned with anisotropic operators as

−div (|Du|p(x)−2Du) = μ.

In this case the pointwise estimates found make use of adapted nonlinear Wolff po-
tentials as

Wμ

β,p(·)(x,R) :=
∫ R

0

( |μ|(B(x,
))


n−βp(x)

)1/(p(x)−1)
d




.

We refer to [69] and [22] and also recall Remark 2.9. In this context we also mention
the recent work [34].

4 A Fractional Approach to Regularity

This final section aims at outlining an approach to Theorem 3.2 which we think has
its own interest in that it displays a method which connects in a natural way the max-
imal regularity of Theorem 2.6 and the classical pointwise regularization techniques
known for homogeneous equations. Introducing this approach was indeed one of the
objectives of [77].

Aiming at the explanation of a general point of view, let us recall how the local
L∞-character of the gradient of solutions u ∈ W 1,2(�) to homogeneous equations of
the type

diva(Du) = 0 (4.1)

can be obtained. Looking at this is of course relevant since estimate (3.7) obviously
provides a gradient-L∞-bound when μ = 0. The local boundedness of Du now fol-
lows in two steps

1) One first differentiates (4.1), proving that Du ∈ W
1,2
loc (�).

2) Thanks to 1) one observes that, whenever ξ ∈ {1, . . . , n}, the gradient compo-
nent v := Dξu is an energy solution to the linear elliptic equation with measurable
coefficients given by

div(A(x)Dv) = 0, A(x) := az(Du(x)).

At this stage the boundedness of v ≡ Dξu follows applying an iteration method, as
for instance the one devised in the pioneering work of De Giorgi [33]. This is in turn
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based on the use of Caccioppoli’s inequalities on level sets. Defining

(w − k)+ := max{w − k,0}, (w − k)− := max{k − w,0}

we have that inequalities of the type

∫
BR/2

|D(Dξu − k)+|2 dx ≤ c

R2

∫
BR

|(Dξu − k)+|2 dx (4.2)

and similar variants, for instance involving (Dξu−k)−, hold whenever k ∈ R. In turn,
the iteration of such inequalities yields the boundedness of Dξu. In such an iteration,
one controls the level sets of Dξu via the higher order derivatives D(Dξu − k)+ and
Sobolev embedding theorem, building a geometric iteration in which, at every step,
the rate of convergence is dictated by the Sobolev embedding exponent.

Applying such an argument to (3.5) seems to be difficult, as 1) immediately fails
due to the lack of differentiability of Du even in the simplest case given by −�u = μ.
On the other hand Theorem 2.9 tells us that although full differentiability fails in
general, fractional derivatives survive. More precisely, with the notation in (2.37),
(2.40) gives that

[Du]1−ε,1;�′ =
∫

�′

∫
�′

|Du(x) − Du(y)|
|x − y|n+1−ε

dx dy < ∞ (4.3)

holds for every ε ∈ (0,1), and every subdomain �′ � � relatively compact with
respect to �. The previous quantity is intuitively the L1-norm of the “(1 − ε)-order
derivative” of Du, roughly denotable by D1−εDu. The inequality in (4.3) lets us
think that Caccioppoli type inequality (4.2) should be replaced by a fractional order
version, and using the L1-norm, rather than the L2-one. Indeed we have the following
theorem, that we again state for simplicity in the form of an a priori estimate (this
can be again removed via an approximation scheme, and by considering suitable
definitions of solutions). Needless to say, what matters here is the precise form of the
a priori estimate.

Theorem 4.1 (Non-local Caccioppoli inequality, [77]) Under the assumptions of
Theorem 3.2, whenever ξ ∈ {1, . . . , n}, k ≥ 0, and whenever BR ⊆ � is a ball with
radius R, the inequality

[(|Dξu| − k)+]σ,1;BR/2 ≤ c

Rσ

∫
BR

(|Dξu| − k)+ dx + cR1−σ |μ|(BR), (4.4)

holds for every σ < 1/2, where the constant c depends only on n,L/ν,σ .

See (2.37) for more notation. Comparing (4.4) and (4.2), Theorem 4.1 tells us that for
quasilinear equations Caccioppoli’s inequalities are a robust tool that keeps holding
at intermediate derivatives/integrability levels. From second derivatives in L2 we
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switch to 1 + σ derivatives in L1 according to the following scheme:

classical (4.2) fractional (4.4)

integrability L2 − L2 L1 − L1

differentiability 1 −→ 2 1 −→ 1 + σ

We do think that the idea of using non-local Caccioppoli inequalities instead of the
usual ones is interesting in itself as it leads to certain types of iterations which work
without fully differentiating the equation. In turn, this could apply to all those prob-
lems with a lack of full differentiability. We explicitly note that a fractional Cac-
cioppoli inequality has been indeed derived for a problem which has formally integer
order.

The idea is now rather natural: inequality (4.4) serves to start an iteration in which
at each stage we control the level set of Dξu via the fractional derivative Dσ (Dξu)

and the fractional version of Sobolev embedding theorem. We come up again with a
geometric iteration where each step is governed by the fractional Sobolev embedding
exponent. A point we want to emphasize is that inequality (4.4) contains all the in-
formation about the pointwise gradient estimate, no matter how small σ is taken. As
a matter of fact in this last step we are not explicitly using the fact that u is a solution,
but rather the fact that Dξu satisfies (4.4). This is indeed the point of view that be-
came classical in regularity theory after [33] and that here reappears on a fractional
level. For this reason, we shall report the next result in an abstract way, i.e. solutions
are not necessarily involved in the next statement.

Theorem 4.2 (De Giorgi’s fractional iteration, [77]) Let v ∈ L1(�) be a function
with the property that there exist σ ∈ (0,1) and c1 ≥ 1, and a Borel measure μ with
finite total mass, such that whenever BR ⊆ � is a ball with radius R and k ≥ 0, the
inequality

[(|v| − k)+]σ,1;BR/2 ≤ c1

Rσ

∫
BR

(|v| − k)+ dx + c1R
1−σ |μ|(BR) (4.5)

holds. Then the estimate

|v(x)| ≤ c −
∫

B(x,R)

|v|dy + cI|μ|
1 (x,R) (4.6)

holds whenever B(x,R) ⊆ �, and x is a Lebesgue point of v; the constant c depends
on c1, n, σ .

Now Theorem 3.2 follows by Theorems 4.1 and 4.2: by Theorem 4.1 we have as-
sumption (4.5) from Theorem 4.2 satisfied by v ≡ Dξu. In turn, applying Theo-
rem 4.2 with such a choice of v we conclude with the desired pointwise gradient
bound, that is (3.7).
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