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The last few years have been a good time for solving long standing geometrical-
topological conjectures. This issue reports on the solution of the Willmore conject-
ure—the “best” topological torus is a “real” torus with ratio of radii equal to

√
2—

and one of Thurston’s conjectures—every hyperbolic 3-manifold can be fibered over
a circle, up to passing to a finite cover.

Starting in the 1960s, Thomas Willmore studied the integral of the squared mean
curvature of surfaces in R

3 as the simplest but most interesting frame invariant elas-
tic bending energy. This energy had shown up already in the early 19th century—too
early for a rigorous investigation. Willmore asked: What is the shape of a compact
surface of fixed genus minimising the Willmore energy in this class? (In the 1990s,
existence of minimisers was proved by Leon Simon, with a contribution by Matthias
Bauer and Ernst Kuwert.) Willmore already knew that the genus-0-minimiser is a
sphere. Assuming that symmetric surfaces require less energy than asymmetric ones
(which has not been proved, yet) he studied families of geometric tori with the smaller
radius 1 fixed and found that the larger radius

√
2 would yield the minimum in this

very special family. He conjectured that this particular torus would be the genus-
1-minimiser. Almost 50 years later Fernando Marques and André Neves found and
published a 100-page-proof. In the present survey article, disregarding technical de-
tails, they explain their approach and their fundamental ideas and provide also an
excellent historical and mathematical background.

After Thurston’s Geometrization Conjecture was finally solved about 10 years ago
by Grigori Perelman, one of the most important questions in three-dimensional topol-
ogy has been to understand the hyperbolic 3-manifolds. William Thurston’s 1982—

H.-Ch. Grunau (B)
Institut für Analysis und Numerik, Fakultät für Mathematik, Otto-von-Guericke-Universität,
Postfach 4120, 39016 Magdeburg, Germany
e-mail: hans-christoph.grunau@ovgu.de

mailto:hans-christoph.grunau@ovgu.de


200 H.-Ch. Grunau

paper “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry” (see
the “Classics Revisited”—contribution of this year’s first issue) lists 24 at that time
open problems in 3-manifolds-theory. Problem No. 18 reads as follows: “Does every
finite volume hyperbolic 3-manifold have a finite cover which fibers over the circle?”
This conjecture was indeed proved 2012 by Ian Agol and Dani Wise. Stefan Friedl
explains their work and the requisite background in his very comprehensible survey
article “Thurston’s Vision and the Virtual Fibering Theorem for 3-Manifolds.” As
Stefan Friedl explains, after Agol & Wise, only “Thurston’s last challenge” concern-
ing ratios of volumes of hyperbolic 3-manifolds remains to be solved.

In this issue the “Classics Revisited”-contribution (in collaboration with the
Zentralblatt für Mathematik) is written by Jean Mawhin. It concerns the “Cours
d’Analyse Infinitésimale” of Charles-Jean de La Vallée Poussin, who is still famous
for his proof (independent of Hadamard’s) of the prime number theorem. These text-
books were used in Belgium for an exceptionally long time. Reviewers praise the
originality, clearness and elegance of the exposition and its merits as a handbook in
analysis.

In the “Book Reviews”—section Günter M. Ziegler gives us a critical view of
Alexander Soifer’s “The Mathematical Coloring Book”. Johannes Huebschmann
evaluates the book on “Poisson Structures” written by Camille Laurent-Gengoux,
Anne Picherau, and Pol Vanhaecke.
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Abstract The Willmore conjecture, proposed in 1965, concerns the quest to find the
best torus of all. This problem has inspired a lot of mathematics over the years, help-
ing bringing together ideas from subjects like conformal geometry, partial differential
equations, algebraic geometry and geometric measure theory.

In this article we survey the history of the conjecture and our recent solution
through the min-max approach. We finish with a discussion of some of the many
open questions that remain in the field.

Keywords Minimal surfaces · Willmore surfaces · Min-max theory · Bending
energy

Mathematics Subject Classification 53A10 · 53C42

1 Introduction

A central theme in Mathematics and particularly in Geometry has been the search
for the optimal representative within a certain class of objects. Partially motivated
by this principle, Thomas Willmore started in the 1960s the quest for the optimal
immersion of a compact surface in three-space. This optimal shape was to be found,
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presumably, by minimizing a natural energy over all compact surfaces in R
3 of a

given topological type. In this survey article we discuss the history and our recent
solution of the Willmore conjecture, the problem of determining the best torus among
all.

We begin by defining the energy. Recall that the local geometry of a surface in R
3

around a point p is described by the principal curvatures k1 and k2, the maximum
and minimum curvatures among all intersections of the surface with perpendicular
planes passing through p. The classical notions of curvature of a surface are then the
mean curvature H = (k1 + k2)/2 and the Gauss curvature K = k1k2. With the afore-
mentioned question in mind, Willmore associated to every compact surface Σ ⊂ R

3

a quantity now known as the Willmore energy:

W(Σ) =
∫

Σ

H 2dμ =
∫

Σ

(
k1 + k2

2

)2

dμ,

where dμ stands for the area form of Σ .
The Willmore energy is remarkably symmetric. It is invariant under rigid motions

and scalings, but less obvious is the fact that it is invariant also under the inversion
map x �→ x/|x|2. Hence W(F(Σ)) = W(Σ) for any conformal transformation F of
three-space. It is interesting that Willmore himself became aware of this fact only
after reading the paper of White [66], many years after he started working on the sub-
ject. As we will explain later, this conformal invariance was actually known already
in the 1920s.

In applied sciences this energy had already been introduced long ago, to study
vibrating properties of thin plates. Starting in the 1810s, Sophie Germain [19] pro-
posed, as the elastic or bending energy of a thin plate, the integral with respect to
the surface area of an even, symmetric function of the principal curvatures. The Will-
more energy is the simplest possible example (excluding the area functional). Similar
quantities were considered by Poisson [53] around the same time.

The Willmore energy had also appeared in Mathematics in the 1920s through
Blaschke [5] and his student Thomsen [62], of whose works Willmore was not ini-
tially aware. The school of Blaschke was working under the influence of Felix Klein’s
Erlangen Program, and they wanted to understand the invariants of surface theory in
the presence of an action of a group of transformations. This of course included the
Möbius group—the conformal group acting on Euclidean space with a point added
at infinity.

A natural map studied by Thomsen in the context of Conformal Geometry, named
the conformal Gauss map by Bryant (who rediscovered it in [8]), associates to every
point of an oriented compact surface in R

3 its central sphere, the unique oriented
sphere having the same normal and mean curvature as the surface at the point. This is
a conformal analogue of the Gauss map, that associates to every point of an oriented
surface its unit normal vector. If we include planes as spheres of mean curvature
zero, the space of oriented spheres in R

3, denoted here by Q, can be identified with
the 4-dimensional Lorentzian unit sphere in the five-dimensional Minkowski space.
The basic principle states that applying a conformal map to the surface corresponds
to applying an isometry of Q to its conformal Gauss map. Since the area of the image
of a closed surface under the conformal Gauss map is equal to the Willmore energy
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of the surface minus the topological constant 2πχ(Σ), the conformal invariance of
W(Σ) becomes apparent this way.

Finally, the Willmore energy has continued to appear in applied fields, like in
biology to study the elasticity of cell membranes (it is the highest order term in the
Helfrich model [21]), in computer graphics in order to study surface fairing [38], or in
geometric modeling [7].

Back to the quest for the best immersion, Willmore showed that round spheres
have the least possible Willmore energy among all compact surfaces in three-space.
More precisely, he proved that every compact surface Σ ⊂ R

3 satisfies

W(Σ) ≥ 4π,

with equality only for round spheres.
Here is a geometric way to see this. First note that when a plane is translated from

very far away and touches the surface for the first time, it will do so tangentially
in a point where the principal curvatures share the same sign. At such points the
Gauss curvature K = k1k2 must necessarily be nonnegative. Therefore the image of
the set of points where K ≥ 0 under the Gauss map N must be the whole S2. Since
K = det(dN), the area formula tells us that

∫
{K≥0} Kdμ ≥ area(S2) = 4π . The result

of Willmore follows because H 2 ≥ K , with equality at umbilical points (k1 = k2),
and the only totally umbilical surfaces of R3 are the round spheres.

Willmore continued the study of his energy and, having found the compact surface
with least possible energy, tried to find the minimizing shape among the class of
tori [67]. It is interesting to note that no obvious candidate stands out a priori. To
develop intuition about the problem, Willmore considered a special type of torus: he
fixed a circle C of radius R in a plane and looked at the tube Σr of constant radius
r < R around C. When r is small, Σr is very thin and the energy W(Σr) is very
large. If we keep increasing the value of r , the size of the middle hole of the torus
decreases and eventually the hole disappears for r = R. The energy W(Σr) becomes
arbitrarily large when r approaches R. Therefore the function r �→ W(Σr) must have
an absolute minimum in the interval (0,R), which Willmore computed to be 2π2.

Up to scaling, the optimal tube in this class has R = √
2 and r = 1:

Σ√
2 = {(

(
√

2 + cosu) cosv, (
√

2 + cosu) sinv, sinu
) ∈R

3 : u,v ∈R
}
.

In light of his findings, Willmore conjectured that this torus of revolution should
minimize the Willmore energy among all tori in three-space:

Conjecture (Willmore [67]) Every compact surface Σ of genus one in R
3 must sat-

isfy

W(Σ) ≥ 2π2.

It seems at first rather daring to have made such a conjecture after having it tested
only for a very particular one-parameter family of tori. On the other hand, the torus
that Willmore found is very special and had already appeared in geometry in dis-
guised form. It turns out that there exists a stereographic projection from the unit
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3-sphere S3 ⊂ R
4 minus a point onto Euclidean space R

3 that maps the Clifford
torus Σ̂ = S1( 1√

2
) × S1( 1√

2
) onto Σ√

2. We will say more about the Clifford torus
later.

In [39], we proved:

Theorem 1.1 Every embedded compact surface Σ in R
3 with positive genus satisfies

W(Σ) ≥ 2π2.

Up to rigid motions, the equality holds only for stereographic projections of the Clif-
ford torus (like Σ√

2).

The rigidity statement characterizing the equality case in Theorem 1.1 is opti-
mal because stereographic projections are conformal and, as we have mentioned, the
Willmore energy is conformally invariant.

Since Li and Yau [37] had proven in the 1980s that compact surfaces with self-
intersections have Willmore energy greater than or equal to 8π , our result implies:

Corollary 1.2 The Willmore conjecture holds.

2 Some Particular Cases and Related Results

In this section we survey some of the results and techniques that have been used in
understanding the Willmore conjecture. Our emphasis will be in giving a glimpse of
the several different ideas and approaches that have been used, instead of giving an
exhaustive account of every result proven. The reader can find more about the subject
in [22, 48, 51, 69, 70].

The richness of the problem derives partially from the fact that the Willmore en-
ergy is invariant under conformal maps. Since stereographic projections are confor-
mal, one immediate consequence is that the conjecture can be restated for surfaces in
the unit 3-sphere S3. Indeed, if Σ is a compact surface in S3 and Σ̃ denotes its image
in R

3 under a stereographic projection, then one has

W(Σ̃) =
∫

Σ

1 +
(

k1 + k2

2

)2

dμ,

where k1, k2 are the principal curvatures of Σ with respect to the standard metric
on S3. For this reason we take the right-hand side of the equation above as the defi-
nition of the Willmore energy of Σ ⊂ S3:

W(Σ) =
∫

Σ

(
1 + H 2)dμ.

The Willmore conjecture can then be restated equivalently in the following form:
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Conjecture (Willmore [67]) Every compact surface Σ ⊂ S3 of genus one must sat-
isfy

W(Σ) ≥ 2π2.

We need to introduce an important class of surfaces that plays a central role in
understanding the Willmore energy, as we will see later. This is the class of minimal
surfaces, defined variationally as surfaces that are stationary configurations for the
area functional, i.e., those for which the first derivative of the area is zero with respect
to any variation.

These surfaces are characterized by the property that their mean curvature H van-
ishes identically. Hence it follows immediately from the expression for W(Σ) that
the Willmore energy of a minimal surface in S3 is equal to its area. The equators
(or great spheres) are the simplest examples of minimal surfaces in S3, with area 4π ,
while the Clifford torus is a minimal surface in S3 with area 2π2. Note that this is
compatible with the fact that Σ√

2 is a stereographic projection of the Clifford torus

and W(Σ√
2) = 2π2. There are infinitely many known compact minimal surfaces

in S3. For instance Lawson [36] in the 1970s found embedded orientable minimal
surfaces in S3 of any genus.

Given that the Willmore conjecture was initially tested only for a very particular
set of tori in R

3, the first wave of results consisted in testing the conjecture on larger
classes. Willmore himself in 1971 [68], and independently Shiohama and Takagi [59],
verified the conjecture for tubes of constant radius around a space curve γ in R

3.
An explicit computation gives that such a torus must satisfy

W(Σ) ≥ π

∫
γ

|k|ds,

where |k| ≥ 0 is the curvature of the space curve γ . Hence the result follows from
Fenchel’s Theorem [16], which establishes

∫
γ

|k|ds ≥ 2π .

In 1973, Chen [10] checked that every intrinsically flat torus in S3 has Willmore
energy greater than or equal to 2π2, with equality only for the Clifford torus. The
inverse image under the Hopf map S3 → S2 of a closed curve in S2 is a flat torus in
S3 and thus such examples abound. Chen’s Theorem follows from integral geometric
arguments that we quickly describe. Given a surface Σ in R

k+2 with unit normal
bundle B , we have the generalized Gauss map

G : B → Sk+1 = {
v ∈ R

k+2 : |v| = 1
}
.

The total curvature τk(Σ) is defined as the total (k + 1)-volume parametrized by G
divided by the volume of Sk+1. Chern-Lashof [12] showed that the total curvature
is equal to the average number of critical points of a linear function on Σ . There-
fore every torus has total curvature greater than or equal to 4. Through purely local
computations, Chen showed that if a torus Σ ⊂ S3 ⊂ R

4 is flat, then

W(Σ) ≥ π2

2
τ2(Σ),
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that combined with the Chern-Lashof inequality implies the result. Later he extended
this result to include flat tori in the unit n-sphere Sn [11]. See [2] and [63] for other
related results.

In 1976, Langevin and Rosenberg [35] showed that the Willmore energy of a knot-
ted torus in R

3 is at least 8π . The key estimate was to show that if the torus is knotted
then every linear function has at least 8 critical points. Hence

1

4π

∫
Σ

|K|dμ = 1

2
τ1(Σ) ≥ 4,

where the first identity follows from the definition of total curvature and the fact that
K = det(dN), while the inequality follows from the Chern-Lashof result. Therefore,
since

∫
Σ

Kdμ = 0 by the Gauss–Bonnet Theorem, we have

W(Σ) ≥
∫

{K≥0}

(
k1 + k2

2

)2

dμ ≥
∫

{K≥0}
Kdμ = 1

2

∫
Σ

|K|dμ ≥ 8π.

This result is reminiscent of the Fary-Milnor Theorem [15, 42], which states that the
total curvature

∫
C

|k|ds of a knotted closed curve C in R
3 must exceed 4π .

In 1978, Weiner [65] checked that the Clifford torus is a critical point with non-
negative second variation of the Willmore energy. If this were not the case there
would be some small perturbation of the Clifford torus with strictly smaller energy,
contradicting the conjecture.

In 1982, Li and Yau [37] were the first to exploit in a crucial way the conformal
invariance of the problem. They introduced the important notion of conformal volume
of an immersion φ : Σ → Sn:

Vc(n,φ) = sup
g∈Conf (Sn)

area(g ◦ φ),

and obtained various striking results. Their ideas, that we describe below, had a last-
ing impact in Geometry. The results are valid when the ambient space is the unit
n-sphere but we restrict ourselves to S3 for simplicity.

The conformal group of S3, modulo isometries, is parametrized by the unit
4-ball B4: for each v ∈ B4 we associate the conformal map

Fv : S3 → S3, Fv(x) = (1 − |v|2)
|x − v|2 (x − v) − v. (1)

The map F0 is the identity and, for v 	= 0, Fv is a conformal dilation with fixed points
v/|v| and −v/|v|.

For illustrative purposes, we note that if B is a geodesic ball in S3 and p ∈ S3, then
Ftp(B) is a geodesic ball that, as t < 1 tends to 1, could have three types of behavior.
It converges to the whole 3-sphere if p is inside B , to the antipodal point −p if p is
outside the closure of B , or to the hemisphere touching ∂B tangentially at p in case
p is in the boundary of B .

Using these transformations, Li and Yau showed that if a surface Σ contains a
k-point p, i.e., if nearby p the surface looks like k small discs containing p, then
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W(Σ) ≥ 4πk. The proof goes as follows: as t < 1 tends to 1, Ftp(Σ) converges to a
union of k great spheres (boundaries of hemispheres). Since

W(Σ) = W
(
Ftp(Σ)

) ≥ area
(
Ftp(Σ)

)
,

by taking the limit as t → 1 we get

W(Σ) ≥ area(k great spheres) = 4πk.

One consequence of this result is that the energy of every compact surface is at
least 4π (a result we already mentioned). It also follows that the energy of any com-
pact surface that is not embedded, hence contains a double-point at least, must be
greater than or equal to 8π . In particular, one can restrict to the class of embedded
tori in order to prove the Willmore conjecture.

Another consequence is that every immersed projective plane in R
3 must have

Willmore energy greater than or equal to 12π . This is because such projective planes
always contain a triple-point at least. Bryant [9] and Kusner [26] found projective
planes in R

3 with Willmore energy exactly equal to 12π . All such projective planes
were classified in [9].

In that same paper, Li and Yau also found a region R (see below for an explicit
description) in the space of all conformal structures so that if the conformal class of a
torus Σ ⊂ S3 lies in R, then W(Σ) ≥ 2π2. The conformal class of the Clifford torus
(square lattice) is in the boundary of R. This result relates in an ingenious way the
conformal invariance of the Dirichlet energy

∫
Σ

|∇f |2 dμ in dimension two with the
conformal invariance of the Willmore energy. We discuss briefly the main ideas.

Given a torus Σ ⊂ S3, the Uniformization Theorem tells us that Σ is diffeomor-
phic to R

2/Γ , where Γ is some lattice in R
2, and that the induced metric g on Σ is

conformal to the Euclidean metric g0 on R
2/Γ . The lattice Γ can be chosen to be

generated by the vectors (1,0) and (x, y), with 0 ≤ x ≤ 1/2, y ≥ 0 and x2 + y2 ≥ 1.
Recall that the first nontrivial eigenvalue of the Laplacian with respect to g0 is

given by

λ1 = inf∫
Σ f dμg0=0,f 	=0

∫
Σ

|∇g0f |2 dμg0∫
Σ

f 2 dμg0

. (2)

Li and Yau first prove, through a degree argument, that Σ can be balanced by ap-
plying a conformal transformation, i.e. that there exists v0 ∈ B4 such that

∫
Σ

xi ◦
Fv0 dμg0 = 0 for every i = 1, . . . ,4. By evaluating the quotient in the right hand side
of Eq. (2) with f = xi ◦ Fv0 , summing over i = 1, . . . ,4 and using the conformal
invariance of the Dirichlet energy in dimension two, they show that

λ1 area
(
R

2/Γ,g0
) = λ1

4∑
i=1

∫
Σ

(xi ◦ Fv0)
2 dμg0 ≤

4∑
i=1

∫
Σ

∣∣∇g0(xi ◦ Fv0)
∣∣2

dμg0

=
4∑

i=1

∫
Σ

∣∣∇g(xi ◦ Fv0)
∣∣2

dμg = 2 area
(
Fv0(Σ)

)
.
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Using the conformal invariance of the Willmore energy we have,

area
(
Fv0(Σ)

) ≤W
(
Fv0(Σ)

) = W(Σ),

where the first inequality comes from the expression of the Willmore energy in S3.
Putting these two inequalities together Li and Yau obtained that

λ1 area
(
R

2/Γ,g0
) ≤ 2W(Σ).

The left-hand side of the above inequality can be computed for every conformal class
of the torus. It turns out that if Γ is in the set R of lattices such that the generators
(1,0) and (x, y) satisfy the additional assumption y ≤ 1, besides 0 ≤ x ≤ 1/2, y ≥ 0
and x2 + y2 ≥ 1, then

4π2 ≤ λ1 area
(
R

2/Γ,g0
)
.

This finishes Li-Yau’s proof that W(Σ) ≥ 2π2 when the conformal class of Σ lies
in R. In 1986, Montiel and Ros [44] found a larger set of lattices, still containing the
square lattice on the boundary, for which the Willmore conjecture holds.

In 1984, Langer and Singer [33] showed that the energy of every torus of revolu-
tion (with possibly noncircular section) in space is greater than or equal to 2π2, with
equality only for the Clifford torus and dilations of it. The basic fact, observed inde-
pendently by Bryant and Pinkall, is that if γ is a closed curve in the upper half-plane
P = {(x, y,0) : y > 0}, and Σ is the torus obtained by revolving γ around the x-axis,
then

W(Σ) = π

2

∫
γ

k2−1ds,

where k−1 is the geodesic curvature of γ computed with respect to the hyperbolic
metric on P . Langer and Singer showed that every regular closed curve in the hy-
perbolic plane satisfies

∫
γ

k2−1ds ≥ 4π , and the inequality follows. Later, Hertrich-
Jeromin and Pinkall [23] extended this computation to a larger class of tori (Kanaltori
in German), for which the Willmore energy is still given by a line integral.

The variational problem associated to the Willmore energy is extremely interest-
ing, and many solutions are known that are not of minimizing type. Surfaces that con-
stitute critical points of the Willmore energy are called Willmore surfaces (they were
previously called conformal minimal surfaces by Blaschke). The Euler-Lagrange
equation for this variational problem, attributed by Thomsen [62] to Schadow, is of
fourth order and is the same for surfaces in R

3 or S3:

�H + (k1 − k2)
2

2
H = 0.

In particular, minimal surfaces are always Willmore and therefore Lawson’s minimal
surfaces in S3 provide examples of compact embedded surfaces of any genus that are
stationary for the Willmore functional.

A classification of all Willmore spheres was achieved in a remarkable work of
Bryant [8, 9], who exploited with significant creativity the conformal invariance of
the problem. He discovered that their Willmore energies are always of the form 4πk,
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with k ∈N\{2,3,5,7} (see also [49]), and that the only embedded ones are the round
spheres.

This result had a great impact, so we briefly describe it. Motivated by his find-
ing that the conformal Gauss map of a Willmore surface is a conformal harmonic
map, Bryant constructed a quartic holomorphic differential on any such surface. This
holomorphic differential must vanish on a topological sphere. Bryant used this fact to
show that a Willmore sphere must be the conformal inversion of some minimal sur-
face in R

3 with finite total curvature and embedded ends. It follows from the theory
of these minimal surfaces that the Willmore energy of the sphere has to be a multi-
ple of 4π . Finally, Bryant reduced the problem of finding all possible such minimal
immersions to a problem in algebraic geometry concerning zeros and poles of mero-
morphic maps on S2, from which he derived his classification. Ejiri, Montiel, and
Musso [14, 43, 46] extended this work and classified Willmore spheres in S4.

Up to this point, every known Willmore surface was the conformal image of some
minimal surface in R

3 or S3. Pinkall [50] found in 1985 the first examples of embed-
ded Willmore tori that are not of this type. His idea was to look at the inverse image
under the Hopf map π of closed curves γ in S2. The Willmore energy is given by

W
(
π−1(γ )

) = π

∫
γ

1 + k2 ds,

where k is the geodesic curvature of γ . Langer and Singer [34] had shown that there
are infinitely many simple closed curves that are critical points of the functional in
the right-hand side (these are called elastic curves). Pinkall argued that the inverse
image of an elastic curve is a Willmore torus, and that among those the only one that
is conformal to a minimal surface in S3 is the Clifford torus (the inverse image of an
equator in S2). Finally, if any of the Pinkall tori were to be the conformal image of
some minimal surface S in R

3, the embeddedness of the torus would imply that S

had to be a nonplanar minimal surface asymptotic to a plane. These surfaces do not
exist. Later, Ferus and Pedit [17] found more examples of Willmore tori.

In 1991, the biologists Bensimon and Mutz [47] (see also [41]), gave experimen-
tal evidence to the Willmore conjecture with the aid of a microscope while studying
the physics of membranes! They produced toroidal vesicles in a laboratory and ob-
served that their shape, which according to the Helfrich model should approach the
minimizer for the Wilmore energy, was the one predicted by Willmore or one of its
conformal images.

The existence of a torus that minimizes the Willmore energy among all tori was
proven by Simon [60] in 1993. This result was obtained through a technical tour de
force and many of the ideas involved are now widely used in Geometric Analysis.
Very briefly, Simon picked a sequence of tori whose energies converge to the least
possible value and showed the existence of a limit in some weak measure theoretic
sense. Exploiting with great effectiveness the fact that the tori in the sequence are
embedded (otherwise the energy would be at least 8π ), he obtained that the weak
limit must be a smooth embedded surface. A serious difficulty in accomplishing this
comes from the conformal invariance of the problem. For instance, one could start
with a minimizing torus and apply a sequence of conformal maps so that the images
look like some round sphere with increasingly smaller handles attached. In the limit
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one would obtain a round sphere instead of a torus. To overcome this, Simon showed
that every torus can be corrected by applying a carefully chosen conformal map so
that it becomes far away in Hausdorff distance from all round spheres. This way he
is sure that in his minimization process he will get a limiting surface that is a torus.

More generally, let βg denote the infimum of the Willmore energy among all ori-
entable compact surfaces of genus g. It was independently observed by Kusner and
Pinkall (see [25, 27, 60]) that a Lawson minimal surface of genus g, for every g, has
area strictly smaller than 8π . This implies βg < 8π . Later Kuwert, Li and Schätzle
[31] showed that βg tends to 8π as g tends to infinity.

It is natural to ask whether there exists a genus g surface with energy βg . Note that
for every partition g = g1 + · · · + gk by integers gi ≥ 1, one has

βg ≤ βg1 + · · · + βgk
− 4(k − 1)π.

In order to see this take Σi to be a surface of genus gi with energy arbitrarily close
to βgi

, i = 1, . . . , k. Apply a conformal map to Σi to get a surface Σ̃i that can be
decomposed into two regions: one that looks like a round sphere of radius one minus
a small spherical cap and another one that contains gi small handles. Remove the
handle regions for i ≥ 2 and sew them into Σ̃1 to get a surface with g handles and
energy close to βg1 + · · · + βgk

− 4(k − 1)π . Simon [60] showed that βg is indeed
attained provided there is no partition g = g1 +· · ·+gk by integers gi ≥ 1 with k ≥ 2
such that each βgi

is attained and

βg = βg1 + · · · + βgk
− 4(k − 1)π. (3)

Bauer and Kuwert [4], inspired by Kusner [28], showed that such partitions do
not exist, hence βg can be realized by a surface of genus g for all g. More precisely,
they show that if M with genus h and N with genus s realize βh and βs , respectively,
then a careful connected sum near non-umbilic points of M and N produces a surface
with genus g = h + s and Willmore energy strictly smaller than βh + βs − 4π . This
suffices to show that (3) never occurs.

Incidentally, one immediate consequence of our Theorem 1.1 is that βg ≥ 2π2 for
all g ≥ 1. Since we also have βg < 8π , it is not difficult to see that partitions as above
can never occur.

In 1999, Ros [57] proved the Willmore conjecture for tori in S3 that are preserved
by the antipodal map. (This also follows from the work of Topping [63] on integral
geometry.) More precisely, Ros showed that every orientable surface in the projective
space RP

3 has Willmore energy greater than or equal to π2. His approach was quite
elegant and based on the fact, proven by Ritoré and Ros [54], that of all surfaces
which divide RP

3 into two pieces of the same volume, the Clifford torus is the one
with least area (which in this case is π2). The result follows because he also proved
that the surface induced in RP

3 by an antipodally-symmetric surface of odd genus in
S3 is necessarily orientable.

We now describe the method of Ros because it was inspirational in our approach.
An orientable surface Σ in RP

3 must be the boundary of a region Ω , which we can
choose so that the volume of Ω is not bigger than half the volume of RP

3. Next,
Ros looked at the region Ωt of points that are at a distance at most t from Ω . For
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very large t , Ωt will be the whole RP
3 and thus there must exist some t0 so that

the volume of Ωt0 is equal to half the total volume. The result we mentioned in the
previous paragraph implies that area(∂Ωt0) ≥ π2. Finally, Ros observed that

W(Σ) ≥ area(∂Ωt ) for all t ≥ 0 (4)

and thus W(Σ) ≥ π2, as he wanted to show. The above inequality is a consequence
of more general inequalities due to Heintze and Karcher [20], and it plays a crucial
role in our method as well.

We briefly sketch its proof. If N is the normal vector of Σ that points outside Ω ,
we can consider the map

ψt : Σ →RP
3, ψt

([x]) = [
cos tx + sin tN(x)

]
.

This map is well defined independently of the representative, x or −x, we choose
for [x]. Since ∂Ωt ⊂ ψt(Σ), we have that

area(∂Ωt ) ≤
∫

{Jacψt≥0}
Jacψtdμ.

Denoting by k1, k2 the principal curvatures of Σ with principal directions e1, e2,
respectively, so that Dei

N = −kiei , i = 1,2, we have

Jacψt = (cos t − sin tk1)(cos t − sin tk2)

= cos2 t + sin2 tk1k2 − sin t cos t (k1 + k2)

≤ cos2 t + 1

4
sin2 t (k1 + k2)

2 − sin t cos t (k1 + k2)

=
(

cos t − k1 + k2

2
sin t

)2

≤ 1 +
(

k1 + k2

2

)2

.

Therefore

area(∂Ωt ) ≤
∫

{Jacψt≥0}
Jacψtdμ ≤

∫
{Jacψt≥0}

1 +
(

k1 + k2

2

)2

dμ ≤ W(Σ).

One year later, Ros [58] used again the area inequality (4) to show that any
odd genus surface in S3 invariant under the mapping (x1, x2, x3, x4) �→ (−x1,−x2,

−x3, x4) must have Willmore energy greater than or equal to 2π2.
Finally, we mention that the understanding of the analytical aspects of the Will-

more equation has been greatly improved in recent years thanks primarily to the
works of Kuwert, Schätzle (e.g. [29]) and Rivière (e.g. [55]). In [29], Kuwert and
Schätzle analyze isolated singularities of Willmore surfaces in codimension one and
prove, as a consequence, that the Willmore flow (the L2 negative gradient flow of
the Willmore energy) of a sphere with energy less than 8π exists for all time and
becomes round. This uses a blow-up analysis of possible singular behavior of the
flow and Bryant’s classification of Willmore spheres in codimension one. In [55],
Rivière derives a general weak formulation of the Willmore Euler-Lagrange equation
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in divergence form, in any codimension, and proves regularity of weak solutions.
He also extends the analysis of point singularities of [29] to the higher codimension
case. Here is a list of some other current topics of interest, on which there is a lot
of activity today: compactness results (modulo the Möbius group) and blow-up anal-
ysis of Willmore surfaces, existence of minimizers of the Willmore functional un-
der different constraints (fixed topology, conformal class, isoperimetric ratio), study
of Willmore-type functionals in Riemannian manifolds among others. This is a fast
paced area with many developments currently taking place and so, instead of listing
them exhaustively, we point the reader to the survey article on the Willmore func-
tional of Kuwert and Schätzle [30], and to the lecture notes of Rivière [56] where an
introduction to the analysis of conformally invariant variational problems is provided.

3 Min-Max Approach

We now describe the approach we used to solve the Willmore conjecture. As in the
previous sections, we appeal to intuition so that we can emphasize the geometric
nature of the arguments.

One purpose of the min-max technique is to find unstable critical points of a given
functional, i.e., critical points that are not of minimum type. For example, consider
the surface M = {(x, y, z) ∈ R

3 : z = x2 −y2} and the height function f (x, y, z) = z.
Then (x, y, z) = (0,0,0) is a critical point of f of saddle type. It turns out that it is
possible to detect this critical point by a variational approach. The idea is to fix a
continuous path γ : [0,1] → M connecting (0,1,−1) to (0,−1,−1) and set [γ ] to
be the collection of all continuous paths σ : [0,1] → M that are homotopic to γ with
fixed endpoints. We define

L = inf
σ∈[γ ] max

0≤t≤1
f

(
σ(t)

)
.

The projection on the xy-plane of any path in [γ ] has to intersect the diagonal
line {(t, t,0) ∈ R

3 : t ∈ R}, where f vanishes. Hence L ≥ 0. But considering σ(t) =
(0,1 − 2t,−(1 − 2t)2), 0 ≤ t ≤ 1, we see that

0 = f (0,0,0) = f
(
σ(1/2)

) = max
0≤t≤1

f
(
σ(t)

)
.

Hence L = 0. The tangential projection of ∇f|(0,0,0) on M has to vanish because
otherwise we would be able to perturb the path σ near the origin and obtain another
path σ̄ in [γ ] with max0≤t≤1 f (σ̄ (t)) < f (0,0,0) = 0. This is impossible because
L = 0, and so we have found a critical point of f restricted to M via a variational
method.

Note that the same reasoning implies that the index of the critical point has to
be less than or equal to one because otherwise the origin would be a strict local
maximum for f . Again we would be able to perturb σ to obtain another σ̄ in [γ ]
with max0≤t≤1 f (σ̄ (t)) < f (0,0,0) = 0.

Almgren [1] in the 1960s developed a min-max theory for the area functional.
His motivation was to produce minimal surfaces (which are critical points for the
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area functional, as we have mentioned before). The techniques he used come from
the field of Geometric Measure Theory, but we will try to keep the discussion with
as little technical jargon as possible. This min-max theory applies to more general
ambient manifolds, but we restrict to the case of the round 3-sphere for simplicity.

Denote by Z2(S
3) the space of integral 2-currents with boundary zero, which can

be thought of intuitively as the space of oriented Lipschitz closed surfaces in S3,
with integer multiplicities. For instance, the boundary ∂U of any open set U of finite
perimeter is a well-defined element of Z2(S

3). This space is endowed with the flat
topology, according to which two surfaces are close to each other if the volume of the
region in between them is very small.

Let I k = [0,1]k be the unit k-dimensional cube. We will consider continuous
functions Φ : I k → Z2(S

3), and denote by [Φ] the set of all continuous maps
Ψ : I k → Z2(S

3) that are homotopic to Φ through homotopies that fix the maps
on ∂I k . We then define

L
([Φ]) = inf

Ψ ∈[Φ] sup
x∈I k

area
(
Ψ (x)

)
.

The prototype theorem was proven by Pitts [52] (see also [13] for a nice exposition),
a student of Almgren at the time, and states the following.

Theorem 3.1 (Min-max Theorem) Suppose

L
([Φ]) > sup

x∈∂Ik

area
(
Φ(x)

)
.

Then there exists a disjoint collection of smooth, closed, embedded minimal surfaces
Σ1, . . . ,ΣN in S3 such that

L
([Φ]) =

N∑
i=1

mi area(Σi),

for some positive integer multiplicities m1, . . . ,mN .

The condition L([Φ]) > supx∈∂Ik area(Φ(x)) in the above theorem is important
and reflects the fact that [Φ] is capturing some nontrivial topology of Z2(S

3). One
should also expect that the Morse index of Σ , i.e., the maximum number of linearly
independent deformations whose linear combinations all decrease the area of Σ ,
should be no higher than k. This is because the definition of L([Φ]) suggests that
Σ is maximized in at most k directions. Due to the technical nature of the subject,
this expectation remains to be proven.

It is instructive to study a simple example. The equator S3 ∩ {x4 = 0} in S3 is a
minimal surface and its Morse index is one. One way to see that its Morse index is
greater than or equal to one is to note that if we move the equator up with constant
speed, the area decreases. On the other hand, any deformation of the equator that
fixes the enclosed volume cannot decrease the area because the equator is the least
area surface that divides S3 into two pieces of the same volume. Therefore, the Morse
index of the equator is exactly one.
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To produce the equator using the Almgren-Pitts min-max theory we consider the
map

Φ1 : [0,1] →Z2
(
S3), Φ1(t) = S3 ∩ {x4 = 2t − 1}

and the corresponding homotopy class [Φ1]. Given Ψ ∈ [Φ1], there is some 0 ≤
t0 ≤ 1 such that Ψ (t0) divides S3 in two pieces of identical volume. Hence the area
of Ψ (t0) must be bigger than or equal to the area of an equator, and this implies
L([Φ1]) ≥ 4π . Moreover,

L
([Φ1]

) ≤ sup
0≤t≤1

area
(
Φ1(t)

) = 4π

and thus L([Φ1]) = 4π .
The construction of the equator by the Almgren-Pitts min-max theory is so natural

that we became interested in the following question:

Can we produce the Clifford torus using a min-max method?

This question is specially suggestive given the following result of Urbano:

Theorem 3.2 ([64], 1990) Let Σ be a compact minimal surface of S3 with Morse
index no bigger than 5. Then either Σ is an equator (of Morse index one) or a Clifford
torus (of Morse index 5).

The proof consists in a very elegant and short argument that we now quickly de-
scribe. Denote by L the second variation operator associated to the area functional,
i.e., if N is the unit normal vector to Σ , then for every f ∈ C∞(Σ) we have

d2

(dt)2

∣∣∣∣
t=0

area
(
Pt(Σ)

) = −
∫

Σ

fLf dΣ,

where {Pt }−ε<t<ε is a one parameter family of diffeomorphisms generated by a vec-
tor field X that satisfies X = f N along Σ .

Let e1, . . . , e4 denote the coordinate vectors in R
4. An explicit computation shows

that the functions 〈N,ei〉, i = 1, . . . ,4, are eigenfunctions of L on Σ with eigenvalue
λ = −2. One can also see that they are linearly independent, unless the minimal
surface Σ is an equator. Moreover, it is well known that the first eigenfunction has
multiplicity one and so it cannot belong to the span of {〈N,e1〉, . . . , 〈N,e4〉} (unless
again the minimal surface Σ is an equator). Hence, if Σ is not an equator then the
Morse index of Σ is at least 5. In case it is equal to 5, Urbano used the Gauss–Bonnet
Theorem to show that Σ has to be the Clifford torus.

Motivated by this, we defined a 5-parameter family of surfaces that we explain
now after introducing some notation. Let Fv be the conformal maps defined in (1).
Given an embedded surface S = ∂Ω , where Ω is a region of S3, we denote by St the
surface at distance t from S, which means that St is given by

∂
{
x ∈ S3 : d(x,Ω) ≤ t

}
if 0 ≤ t ≤ π
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and by

∂
(
S3 \ {

x ∈ S3 : d(
x,S3 \ Ω

) ≤ −t
})

if − π ≤ t < 0.

Note that St is not necessarily a smooth surface (due to focal points), but it is nonethe-
less the boundary of an open set with finite perimeter hence constitutes a well defined
element of Z2(S

3).
Given an embedded compact surface Σ ⊂ S3, we defined in [39] the canonical

family {Σ(v,t)}(v,t)∈B4×[−π,π] of Σ by

Σ(v,t) = (
Fv(Σ)

)
t
∈Z2

(
S3).

If Σ is the Clifford torus, then the infinitesimal deformations of Σ(v,t) near (v, t) =
(0,0) correspond to the 5 linearly independent directions described in the proof of
Urbano’s Theorem. In light of this, we decided to apply the min-max method to the
homotopy class of such canonical families in order to produce the Clifford torus.

The canonical family also has the great property that

area(Σ(v,t)) ≤W
(
Fv(Σ)

) = W(Σ), for all (v, t) ∈ B4 × [−π,π].
The above inequality is just like inequality (4), while the identity is a consequence of
the conformal invariance of the Willmore energy.

From these ingredients we devised a strategy to prove the Willmore conjecture.
If the homotopy class Π , determined by the canonical family associated to a surface
with positive genus, indeed produced the Clifford torus via min-max then we would
have from the above inequality that

2π2 = L(Π) ≤ sup
(v,t)∈B4×[−π,π]

area(Σ(v,t)) ≤ W(Σ).

At this point the question of whether or not the canonical family could produce the
Clifford torus by a min-max method was upgraded from an issue on which we had an
academic interest to a question which we really wanted to answer.

Hence it became important to understand the geometric and topological properties
of the canonical family, especially the behavior of Σ(v,t) as (v, t) approaches the
boundary of the parameter space B4 × [−π,π]. The fact that the diameter of S3 is
equal to π implies that Σ(v,±π) = 0 for all v ∈ B4. Hence we are left to analyze what
happens when v approaches S3 = ∂B4.

Assume v ∈ B4 converges to p ∈ S3. If p does not belong to Σ , then it should be
clear that Fv(Σ) is pushed into {−p} as v tends to p, and that area(Fv(Σ)) converges
to zero in this process. When p lies in Σ the situation is more subtle. Indeed, if v

approaches p radially, i.e., v = sp with 0 < s < 1, then Fsp(Σ) converges, as s tends
to 1, to the unique great sphere tangent to Σ at p. Therefore the family of continuous
functions in S3 given by fs(p) = area(Σsp) converges pointwise, as s → 1, to a
discontinuous function that is zero outside Σ and 4π along Σ .

Therefore, for any 0 < α < 4π and p ∈ Σ , there must exist a sequence {vi}i∈N
in B4 converging to p so that area(Σvi

) converges to α and thus it is natural to
expect that the convergence of Fv(Σ) depends on how v approaches p ∈ Σ . A careful
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analysis revealed that, depending on the angle at which v tends to p, Fv(Σ) converges
to a round sphere tangent to Σ at p, with radius and center depending on the angle
of convergence.

Initially we were somewhat puzzled by this behavior, but then we realized that,
even if this parametrization became discontinuous near the boundary of the param-
eter space, the closure of the family {Σ(v,t)}(v,t)∈B4×[−π,π] in Z2(S

3) constituted a
nice continuous 5-cycle relative to the space of round spheres G. In other words, the
discontinuity of the canonical family was being caused by the parametrization of the
conformal maps of S3 chosen in (1).

To address this issue we performed a blow-up procedure along the surface Σ and
we were able to reparametrize the canonical family by a continuous map Φ : I 5 →
Z2(S

3). The image Φ(I 5) is equal to the closure of {Σ(v,t)}(v,t)∈B4×[−π,π] in Z2(S
3).

Moreover, we have:

(A) supx∈I 5 area(Φ(x)) = sup(v,t)∈B4×[−π,π] area(Σ(v,t)) ≤W(Σ);
(B) Φ(x,0) = Φ(x,1) = 0 for any x ∈ I 4;
(C) for any x ∈ ∂I 4 there exists Q(x) ∈ S3 such that Φ(x, t) is a sphere of radius πt

centered at Q(x) for every t ∈ I .

The explicit expression for the center map Q : ∂I 4 → S3 mentioned in property (C)
can be found in [39].

Finally, we discovered a key topological fact:

(D) the degree of the center map Q : S3 → S3 is equal to the genus of Σ . Hence it is
nonzero by assumption.

This point is absolutely crucial because it shows that the topology of the surface Σ ,
i.e. the information of its genus, determines topological properties of the map Φ :
I 5 → Z2(S

3). Note that if the surface Σ we start with is a topological sphere, our
approach could not work because the Willmore conjecture fails in this case. The
genus of the surface Σ enters in our approach via property (D).

In [39], we proved the following result:

Theorem 3.3 (2π2 Theorem) Consider a continuous map Φ : I 5 → Z2(S
3) satisfy-

ing properties (B), (C), and (D). Then

sup
x∈I 5

area
(
Φ(x)

) ≥ 2π2.

We now briefly sketch some of the main ideas behind the proof of the 2π2 Theo-
rem. The first thing to show is that

L
([Φ]) > 4π = sup

x∈∂I 5
area

(
Φ(x)

)
. (5)

The proof is by contradiction, hence assume L([Φ]) = 4π . Let R denote the space
of all oriented great spheres. This space is canonically homeomorphic to S3 by iden-
tifying a great sphere with its center. With this notation, we have from condition (C)
that

Φ
(
∂I 4 × {1/2}) ⊂ R.
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Moreover, the degree of the map Φ : ∂I 4 × {1/2} → R ≈ S3 is equal to deg(Q) by
property (D), and thus it is nonzero. For simplicity, suppose we can find Ψ ∈ [Φ] so
that

sup
x∈I 5

area
(
Ψ (x)

) = L
([Φ]) = 4π.

The basic fact is that, given any continuous path γ : [0,1] → I 5 connecting
I 4 × {0} to I 4 × {1}, the map Ψ ◦ γ : [0,1] → Z2(S

3) is a one-parameter sweep-
out of S3 with

sup
t∈[0,1]

area
(
(Ψ ◦ γ )(t)

) ≤ 4π.

But 4π is the optimal area for the one-parameter min-max in S3. Hence

sup
t∈[0,1]

area
(
(Ψ ◦ γ )(t)

) = 4π,

and there must exist some t0 ∈ (0,1) such that Ψ (γ (t0)) is a great sphere, i.e., such
that Ψ (γ (t0)) ∈ R.

Using this, we argue in [39] that there should be a 4-dimensional submanifold
R in I 5, separating the top from the bottom of the cube, such that Ψ (R) ⊂ R and
∂R = ∂I 4 × {1/2}. Hence

Ψ∗[∂R] = ∂
[
Ψ (R)

] = 0 in H3(R,Z).

On the other hand, Ψ = Φ on ∂R = ∂I 4 × {1/2} and so

Ψ∗[∂R] = Φ∗
[
∂I 4 × {1/2}] = deg(Q)[R] 	= 0.

This is a contradiction, hence L([Φ]) > 4π .
Because of this strict inequality, we can invoke the min-max Theorem and obtain

a closed minimal surface Σ̂ ⊂ S3, possibly disconnected and with integer multiplic-
ities, such that L([Φ]) = area(Σ̂). Since the area of any compact minimal surface in
S3 is at least 4π , we assume that Σ̂ is connected with multiplicity one. Otherwise
L([Φ]) = area(Σ̂) ≥ 8π > 2π2 and we would be done.

It is natural to expect that Σ̂ has Morse index at most five because Φ is defined
on a 5-cube. Urbano’s Theorem would imply in this case that Σ̂ should be either an
equator or a Clifford torus. But since L([Φ]) = area(Σ̂) > 4π , the surface Σ̂ would
have to be a Clifford torus, and then

2π2 = area(Σ̂) = L
([Φ]) ≤ sup

x∈I 5
area

(
Φ(x)

)
.

Because the Morse index estimate in the Almgren-Pitts theory is not available, we
had to exploit the extra structure coming from the canonical family to get an Morse
index estimate. See [39] for more details.

Proof of Theorem 1.1 We can now put everything together and explain how to prove
the inequality in Theorem 1.1. Through a stereographic projection, we can think of
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Σ as a compact surface with positive genus in S3. The canonical family associated to
Σ gives us a map Φ : I 5 → Z2(S

3) satisfying properties (A), (B), (C), and (D). We
use the 2π2 Theorem and property (A) to conclude that

2π2 ≤ sup
x∈I 5

area
(
Φ(x)

) ≤W(Σ).

In the equality case W(Σ) = 2π2, there must exist some (v0, t0) such that
area(Σ(v0,t0)) = W(Σv0) = 2π2. With some extra work (see [39]) we prove that
t0 = 0 and that Σv0 is the Clifford torus. Since Σ = F−1

v0
(Σv0) and Fv0 is conformal,

the rigidity case also follows. �

4 Beyond the Willmore Conjecture

The study of the Willmore energy is a beautiful subject which, as we could see in
Sects. 2 and 3, has brought together ideas from conformal geometry, geometric anal-
ysis, algebraic geometry, partial differential equations and geometric measure the-
ory. Nonetheless many fundamental questions remain unanswered. We finish by dis-
cussing some of them.

A basic question is to determine the minimizing shape among surfaces of genus
g in R

3, for g ≥ 2. A conjecture of Kusner [28] states that the minimizer is ξ1,g ,
a genus g minimal surface found by Lawson [36]. Some numerical evidence for this
conjecture was provided in [24]. It would be interesting to determine the Morse index
of ξ1,2.

Another natural question is whether the Clifford torus also minimizes the Will-
more energy among tori in R

4. Li and Yau [37] showed that the Willmore energy of
any immersed RP

2 in R
4 is greater than or equal to 6π . This value is optimal because

of the Veronese surface. It would be nice to have an analogue of Urbano’s Theorem
in this setting.

For surfaces in CP
2, Montiel and Urbano [45] showed that the quantity W(Σ) =∫

Σ
2+|H |2dμ (the Willmore energy) is conformally invariant. They conjectured that

the Clifford torus minimizes the Willmore energy among all tori. The Willmore en-
ergy of the Clifford torus in CP

2 is equal to 8π2/3
√

3. For comparison, the Willmore
energy of a complex projective line is 2π and there are totally geodesic projective
planes with Willmore energy equal to 4π . Montiel and Urbano also showed that the
Willmore energy of complex tori is greater than or equal to 6π > 8π2/3

√
3, which

gives some evidence towards their conjecture. If answered positively, this conjecture
would help in finding the nontrivial Special Lagrangian cone in C

3 with least possible
density.

Another interesting problem [27] is to determine the infimum of the Willmore
energy in R

3 or R4 among all non-orientable surfaces of a given genus or among all
surfaces in a given regular homotopy class (for instance, in the regular homotopy class
of a twisted torus). As far as we know, it is not even known whether the minimum
is attained. In a related problem, Kusner [28] conjectured that a surface in R

4 with
Willmore energy smaller than 6π has to be a sphere.
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The study of the gradient flow of the Willmore energy, referred to as the Will-
more flow, also suggests many unanswered questions. For instance, it is not known
whether the flow develops finite time singularities but there is numerical evidence
[40] showing that they can occur. In [6] an analytical study was done and it is shown
that singularities happen in finite or infinite time. From Bryant’s classification [8], we
know that the lowest energy of a non-umbilical immersed Willmore sphere is 16π .
Hence one would expect that Willmore spheres with energy 16π could be perturbed
so that the flow exists for all time and converges to a round sphere. Lamm and
Nguyen classified the singularity models that could potentially arise in this situa-
tion [32].

There is an interesting relation with the process of turning a sphere inside out. The
existence of these deformations, called sphere eversions, was discovered by Smale
long ago [61]. The point is that, by a result of Banchoff and Max [3], every sphere
eversion must pass through a sphere that has at least one quadruple point. The Will-
more energy of such sphere is by Li-Yau’s Theorem greater than or equal to 16π . The
existence of a Willmore flow line connecting a Willmore sphere of energy 16π to a
round sphere would therefore provide an optimal sphere eversion. This possibility
was proposed by Kusner and confirmed experimentally in [18].
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Abstract The vision and results of William Thurston (1946–2012) have shaped the
theory of 3-dimensional manifolds for the last four decades. The high point was Perel-
man’s proof of Thurston’s Geometrization Conjecture which reduced 3-manifold
topology for the most part to the study of hyperbolic 3-manifolds. In 1982 Thurston
gave a list of 24 questions and challenges on hyperbolic 3-manifolds. The most dar-
ing one came to be known as the Virtual Fibering Conjecture. We will give some
background for the conjecture and we will explain its precise content. We will then
report on the recent proof of the conjecture by Ian Agol and Dani Wise.
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1 Introduction

The development of the theory of 3-dimensional manifolds, henceforth referred to
as 3-manifolds, does not start out with a theorem, but with the formulation of the
following conjecture by Henri Poincaré [42, 58] in 1904: The 3-dimensional sphere
is the only simply connected, closed 3-manifold. We will give a definition of ‘sim-
ply connected’ in Sect. 3.1, but at this stage it suffices that in essence the Poincaré
Conjecture gives an elegant, intrinsic and purely topological characterization of the
3-dimensional sphere.
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Progress towards resolving the Poincaré Conjecture was virtually non-existent for
over 50 years. In fact, the first genuinely non-trivial result in 3-manifold topology was
proved only in 1957 by Christos ‘Papa’ Papakyriakopoulos [38]. His proof of ‘Dehn’s
Lemma’1 removed a major stumbling block which had held back the development of
3-manifold topology for many decades. This result was in particular instrumental
in the work of Wolfgang Haken [24] and Friedhelm Waldhausen [59] who resolved
many classification problems for what became known as ‘Haken manifolds’. We will
give a definition of a ‘Haken manifold’ in Sect. 5.2. For the time being it is enough
to know that many natural examples of 3-manifolds, e.g. complements of non-trivial
knots in S3, are Haken manifolds.

The modern theory of 3-manifolds is for the most part due to the results and the vi-
sion of William Thurston [55, 56]. In the 1970s Thurston developed the point of view
that 3-manifolds should be viewed as geometric objects. In particular he formulated
the Geometrization Conjecture which loosely speaking states that for the most part
the study of 3-manifolds can be reduced to the study of hyperbolic 3-manifolds. As
we will see in Sect. 6, the Geometrization Conjecture can be viewed as a far reach-
ing generalization of the aforementioned Poincaré Conjecture. In an amazing tour
de force Thurston proved the Geometrization Conjecture for all Haken manifolds.
This proof was announced in 1979, but due to the complexity of the argument it took
another 20 years before all details had finally been established rigorously and had
appeared in print.

The full Geometrization Conjecture, and thus in particular the Poincaré Conjec-
ture, was finally proved by Grisha Perelman [35, 39–41]. The question thus became,
what can we say about hyperbolic 3-manifolds? What do hyperbolic 3-manifolds
look like? To this effect Thurston [56] posed 24 questions and challenges which have
been guiding 3-manifold topologists over the last 30 years.

Arguably the most famous of these questions is the following that we quote ver-
batim:

‘Does every hyperbolic 3-manifold have a finite-sheeted cover which fibers over
the circle? This dubious-sounding question seems to have a definite chance for a
positive answer.’

We will give a definition of ‘fibers over the circle’ in Sect. 4.2 and we will give
a definition of ‘finite-sheeted cover’ in Sect. 7. In a slightly simplified formulation
the question asks whether every hyperbolic 3-manifolds can be given a particularly
simple description after doing a certain basic modification. According to [19] the
‘question was upgraded in 1984’ to the ‘Virtual Fibering Conjecture’, i.e. it was con-
jectured by Thurston that the question should be answered in the affirmative.

The recent article by Otal [37] discussing Thurston’s famous article [56] shows
in particular that many of the aforementioned 24 questions and challenges were an-
swered in the years after Thurston formulated them, and that each time his vision was

1Dehn’s Lemma says that ‘if c is an embedded curve on the boundary of a 3-manifold N such that c

bounds an immersed disk in N , then it already bounds an embedded disk in ∂N ’. This statement goes back
to Max Dehn [12] in 1910, but Hellmuth Kneser [28, p. 260] found a gap in the proof provided by Dehn.
It then took another 30 years to find a correct proof.
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vindicated. But for many years there had been only very scant evidence towards the
Virtual Fibering Conjecture. It seems fair to say that nobody really had an idea for
how to address the conjecture. The situation changed dramatically within the last cou-
ple of years with the revolutionary work of Ian Agol [2, 3] and Dani Wise [61–63].
As a consequence, in April 2012, just before William Thurston’s untimely death, the
Virtual Fibering Conjecture was finally proved. The work of Agol and Wise is easily
the greatest step forward in 3-manifold topology since Perelman’s proof of the Ge-
ometrization Theorem. In some sense it is arguably an even more astounding achieve-
ment: everybody ‘knew’ that the Geometrization Conjecture just had to be true, but
researchers had rather mixed opinions on Thurston’s Virtual Fibering Conjecture.

Prerequisites and Further Reading Our goal has been to write a paper which on the
one hand is accessible for mathematicians who might have only a modest background
in topology, but which on the other hand is also interesting for researchers in the
field. This dual goal creates some unavoidable tensions. For example, our attempt at
making the paper as accessible as possible leads at times to consciously vague and
imprecise formulations. We refer the reader to the indicated references for precise
statements. On the other hand at times we need to use technical terms, but hopefully
one can follow the flow of the story, even if one treats some terms as black boxes.

We refer to [4], [7] and [9] for more technical and detailed accounts of the work
of Agol and Wise.

Organization This paper is organized as follows. In Sect. 2 we will first give an
introduction to manifolds and we will revisit the classification of surfaces, i.e. of
2-manifolds, and of geometric structures on surfaces. In Sect. 3 we will introduce the
notion of a simply connected space and of the fundamental group of a space, and we
will have a quick peek at manifolds of dimension greater than three. Afterwards we
finally settle for the 3-dimensional case. In Sect. 4 we will provide ourselves with
some examples of 3-manifolds to work with and in Sect. 5 we will introduce two
special types of 3-manifolds. In Sect. 6 we will discuss the Geometrization Theorem,
its relation to the Poincaré Conjecture, the partial proof by Thurston and the full proof
by Perelman. In Sect. 7 we will explain in detail the statement of the Virtual Fibering
Conjecture and we will report on its proof by Ian Agol and Dani Wise. We conclude
this note with an exposition in Sect. 8 of the last of Thurston’s challenges that is still
open.

Conventions On several occasions we will use a mathematical term in quotes. This
means that we will not give a definition, and the term can be treated as a black box.
In some cases, e.g. when we use the term ‘non-positively curved cube complex’, the
name will hopefully give at least a vague feeling of what it stands for.

2 Surfaces

2.1 The Definition of a Manifold

Loosely speaking, an n-dimensional manifold is an object which at any given point
looks like we are in R

n. Some low-dimensional examples are given as follows:
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Fig. 1 Examples of 1-manifolds

(1) a point is a 0-dimensional manifold,
(2) a curve is a 1-dimensional manifold,
(3) a surface, e.g. the surface of a ball, of a donut, of a pretzel or of the earth, is a

2-dimensional manifold,
(4) the physical universe, as we personally experience it, is a 3-dimensional mani-

fold, and
(5) spacetime is a 4-dimensional manifold.

Following the usual terminology we will subsequently refer to an n-dimensional man-
ifold as an n-manifold. Furthermore, to be on the safe side, throughout this note we
will make the technical assumption that all manifolds are connected, orientable, dif-
ferentiable and ‘compact’, unless we say explicitly otherwise. We will not attempt to
give the definition of ‘compact’. Loosely speaking it means that we are only inter-
ested in ‘finite’ manifolds; for example the euclidean space R

n is not compact.
We are interested in the study of the intrinsic shapes of manifolds. If two manifolds

have the same intrinsic shape then they are called homeomorphic. For example, let
us consider the 1-manifolds sketched in Fig. 1. The 1-manifolds (a), (c) and (e) have
the property that ‘walking along the 1-manifold one eventually ends up at the starting
point’. On the other hand (b) and (d) behave qualitatively very differently: walking
along either of the 1-manifolds we eventually come to an end. The mathematically
precise way of saying this is that the 1-manifolds (a), (c) and (e) are homeomorphic
to each other and that the 1-manifolds (b) and (d) are homeomorphic to each other,
but none of the former manifolds is homeomorphic to either of the latter.

In the following we say that a manifold is closed if it has no boundary, i.e. walking
on the manifold one never reaches an end. For example, the manifolds (a), (c) and (e)
are closed, the other ones are not. This notion also makes sense in other dimensions,
for example the surface of the earth is closed. On the other hand an annulus or the
Möbius band are not closed.

With this notion we can now state the classification of 1-manifolds: Any closed
1-manifold is homeomorphic to (a) and any non-closed 1-manifold is homeomorphic
to (b).2

2Here recall that throughout the paper we restrict ourselves to compact manifolds; that is why R is missing
from our list of 1-manifolds.
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Fig. 2 Examples of surfaces

2.2 The Classification of 2-Manifolds

After stating the classification of 1-manifolds we now move up one dimension. As
usual we will refer to a 2-manifold as a surface. Just like for curves, the classification
of surfaces up to homeomorphism is quite straightforward to state. First of all, any
closed surface is homeomorphic to the standard surface of genus g that is shown in
Fig. 2. Furthermore, g is uniquely determined. For instance, the surface of a pretzel
is a surface of genus three.

The classification of surfaces with boundary is only slightly more complicated:
any surface with boundary is homeomorphic to the result of removing k disjoint
‘open’ disks from a surface of genus g. Again g and k are uniquely determined.
For example, a disk is homeomorphic to the surface one obtains from deleting one
‘open’ disk from the 2-sphere. Furthermore, one obtains the annulus by deleting two
‘open’ disks from the 2-sphere.

This classification of (orientable) surfaces seems obvious. After all, what other
(orientable) surfaces should there be? But a quick look at non-orientable surfaces,
such as the Möbius band, shows that perhaps we can easily become a victim of
our intuition. Even among more experienced mathematicians, how many readers feel
comfortable in stating the classification of non-orientable surfaces?

2.3 Geometric Structures on Surfaces

Before we proceed to other dimensions we want to consider surfaces as geometric
objects.3 This is a fascinating story in its own right and it will also help us later on in
our study of 3-manifolds.

The most familiar geometries are of course euclidean geometry and spherical ge-
ometry, but it has been known since the early 1800s that these two geometries are
naturally complemented by hyperbolic geometry. In Fig. 3 we show the 2-sphere,
the euclidean plane and the Poincaré disk model for hyperbolic geometry.4 In each
picture we sketch a triangle formed by geodesics. In the euclidean plane the angle
sum of a triangle is of course equal to π . The fact that the sphere is positively curved
implies that the angle sum of a triangle is always greater than π . On the other hand

3This topic was also discussed by Klaus Ecker [13] in an earlier Jahresbericht.
4In the Poincaré disk model for hyperbolic geometry the space is given by an open disk in R

2 and the
geodesics are given by the segments of Euclidean circles which intersect the given disk orthogonally. This
model of hyperbolic geometry inspired M.C. Escher to create his famous woodcuts Circle Limit I, II, III
and IV.
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Fig. 3 The spherical, euclidean and hyperbolic geometry

the angle sum of a triangle in the hyperbolic space is always less than π , reflecting
the fact that hyperbolic space is negatively curved.

We can now state one of the most beautiful findings of 19th century mathemat-
ics: Every surface is either spherical, euclidean or hyperbolic. This means that every
surface can be equipped with a ‘metric’ such that at each point the surface looks like
either the 2-sphere, or the euclidean plane or hyperbolic space.

In the following we will quickly outline where these metrics come from. Almost
by definition the 2-sphere has a spherical metric. Moving on, the fact that the annulus
admits a euclidean metric follows from the observation that we can roll a piece of
paper into a tube (which is homeomorphic to an annulus) without stretching or wrin-
kling. Now we turn to the 2-dimensional torus. We will in fact present not just one,
but three arguments that the torus supports a euclidean metric.

(1) The first approach generalizes what we did for the annulus. The torus can be
built out of the tube by gluing the two ends together. If we do the bending and
gluing in R

3, then we have to deform the tube, and the resulting torus is no longer
euclidean. On the other hand, if we do the bending and gluing in R

4, then this
can be done without stretching and the resulting torus has a euclidean metric.

(2) As we illustrate in Fig. 4, we can build the torus out of the humble unit square in
R

2 by gluing the opposite sides together. While gluing we have to ensure that the
metrics match up. The gluing can be performed via isometries and a moment’s
thought shows that the result is indeed a euclidean metric on the torus.

(3) Finally, the most concise but also the most abstract way of seeing an euclidean
structure on the torus is by realizing the torus as the quotient space R

2/Z2.

Now we turn to a surface of genus g ≥ 2. We will try to see how far we can get
with the second approach that we took for the torus. We obtained the torus by gluing
the opposite sides of a square, i.e. of a regular 4-gon. Similarly one can obtain the
surface of genus g by gluing the sides of a regular 4g-gon in an appropriate way. In
order to simplify our discussion and our pictures henceforth we restrict ourselves to
the case g = 2. We consider the regular octagon on the left of Fig. 5 and we glue the
sides with the same symbol to each other in such a way that the orientations match.
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Fig. 4 By gluing together
opposing sides of a square we
obtain a torus

Fig. 5 Construction of a
hyperbolic metric on a surface
of genus 2

With very well-trained eyes one can spot that we just obtained a surface of genus 2.
(For less well-trained eyes an illustration is given in [14, Chap. 7.1].)

Again we can do the gluing via isometries, but now there is an obstacle. In order
to see the problem, note that all the eight vertices of the octagon get glued together
and form one point on the surface. The eight interior angles of the octagon form one
full angle around the new point. But the interior angles add up to 8 · 3π

4 = 6π , which
is much more than a full circle. Thus we see that this attempt of finding a euclidean
metric on the surface of genus 2 has failed. In fact there is a deeper reason why
this approach does not work: it is an immediate consequence of the Gauss–Bonnet
theorem that the surface of genus 2 cannot admit a euclidean metric.

We will now modify the approach. Instead of a euclidean octagon we will use
a hyperbolic octagon. As we already pointed out, the salient feature of hyperbolic
geometry is that the angle sum of n-gons is smaller than for euclidean n-gons. In
fact there exists a regular hyperbolic octagon such that the interior angle at each
vertex is π

4 , see Fig. 5 on the right. Now we use reflections and translations in the
hyperbolic plane to perform the same type of gluings as before. Again we obtain a
surface of genus 2, but this time the interior angles add up to 8 · π

4 = 2π , so we obtain
a hyperbolic metric on the surface.

In fact, playing with the construction, using irregular hyperbolic octagons, one can
produce many more hyperbolic metrics which are pairwise non-isometric. (For exam-
ple they can be distinguished by the length of the shortest closed geodesic.) We refer
to [52] for a much more detailed discussion of metrics on surfaces.
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Fig. 6 Loops on the sphere and on the torus

3 Manifolds of Dimension Greater than Three

Now we want to have a quick peek at manifolds of dimension greater than three. At
this point it is helpful to introduce the notion of a ‘simply connected’ manifold, which
we already used in the formulation of the Poincaré Conjecture.

3.1 Simply Connected Manifolds and the Fundamental Group

Loosely speaking, a space is said to be simply connected if every lasso in the space
can be pulled tight. A little more precisely, a space is called simply connected if every
loop in the space can be contracted to a point. In Fig. 6 we show on the left that the
equator on the sphere can be contracted to a point. In fact the 2-sphere, and also all
spheres of dimension greater than two are simply connected.

In Fig. 6 on the right we show a loop on the 2-dimensional torus which cannot be
contracted to a point. The torus, and in fact any surface of genus greater than zero, is
not simply connected. Together with the classification of closed surfaces in Sect. 2.2
this gives us the Poincaré Conjecture in dimension 2: the 2-sphere is the only simply
connected, closed 2-manifold.

Given a connected space X, the fundamental group π1(X) of a space is a group
which ‘measures’ how far X is from being simply connected. More precisely, the
fundamental group π1(X) is trivial if and only if the space X is simply connected.
For example, the fundamental group of the torus is Z

2 and the fundamental group
of a surface of genus greater than one is an infinite non-abelian group. In fact the
fundamental group of any hyperbolic manifold, of any dimension, is infinite and non-
abelian.

3.2 Manifolds of Dimension Greater than Three

Now we will have a quick look at manifolds whose dimensions are greater than four.
Somewhat surprisingly, the ‘extra room’ one has in the high-dimensional setup makes
some of the classification problems much easier. For example the natural general-
ization of the Poincaré Conjecture to higher dimensions was proved in dimensions
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Fig. 7 Examples of knots

greater than four by Stephen Smale [51] in the early 1960s. This predates Perelman’s
proof of the original Poincaré Conjecture by a wide margin.5

Despite this success, once one considers non-simply connected manifolds, a very
different picture emerges. It is relatively easy to show, see e.g. [11, Theorem 5.1.1],
that given any n ≥ 4 one has enough flexibility in constructing n-manifolds to realize
any ‘finitely presented’ group as the fundamental group of a closed n-manifold. This
saddles all problems from group theory onto topology. For example, Sergei Adyan
[1] showed that ‘finitely presented’ groups cannot be classified, which then implies
that it is impossible to classify closed n-manifolds. Here ‘impossible to classify’ is
meant in the strongest terms: not only are we at this moment not able to classify those
manifolds, in fact there cannot exist an algorithm which determines whether or not
two given closed n-manifolds are homeomorphic. We refer to [53, Sect. 9.4] for a
detailed discussion.

4 Examples of 3-Manifolds

Before we delve into the theory of 3-manifolds it is convenient to equip ourselves
with some examples of 3-manifolds. In order to avoid pathologies we henceforth
only consider 3-manifolds which are either closed or such that the boundary consists
of a union of tori.

4.1 Knot Complements

The easiest example of a 3-manifold is of course the 3-sphere S3, which is by defini-
tion the sphere of radius one in R

4. We obtain many more examples of 3-manifolds
by taking the complement of a knot in the 3-sphere. Here, loosely speaking, a knot is
a tied up piece of rope as shown in Fig. 7. (More technically speaking, in this paper
a knot is an embedded open solid torus in S3.) As we will see later on, this decep-
tively easy way of constructing 3-manifolds is in fact a surprisingly rich source of
examples.

It is an amusing visual exercise to convince oneself that the complement of the
trivial knot in S3 is a solid torus.

5The Poincaré Conjecture in dimension four was proved by Michael Freedman [15] in 1982. More pre-

cisely, he showed that any simply connected closed, topological 4-manifold is homeomorphic to S4. It is
not known, whether any simply connected, closed, differential 4-manifold is diffeomorphic to S4. Resolv-
ing that question is often considered as the hardest problem in low-dimensional topology.
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Fig. 8 Building a circle as a fibered manifold

Fig. 9 Building an annulus as a fibered manifold

4.2 Fibered Manifolds

Now we turn to a general three-step procedure for building an (n + 1)-manifold out
of an n-manifold:

(1) pick an n-manifold F ,
(2) consider the product F × [−1,1],
(3) glue the manifold F × {−1} on the left to the manifold F × {1} on the right.

The result is an (n+ 1)-dimensional manifold. This new manifold can be viewed as a
disjoint union of copies of the manifold F . In fact there is a ‘circle’s worth of copies’
of F . We therefore say that the resulting (n + 1)-manifold fibers over the circle and
we refer to each copy of F as a fiber. We sometimes simplify the language and we
just say that the (n + 1)-manifold is fibered.

Let us look at several low-dimensional examples to get a feeling for the definition
of a fibered manifold. If we take F to be a 0-dimensional manifold, i.e. a point, then
the resulting fibered 1-manifold is a circle; see Fig. 8.

We move on to the next dimension and we take F to be an interval. In Fig. 9 we
see that we obtain the annulus by gluing the interval on the left to the interval on the
right in the ‘obvious way’.

While gluing the ‘left interval’ to the ‘right interval’ we notice that we can also
glue in a different way: instead of gluing as in Fig. 9 we can also first perform a twist
and then glue. As we can see in Fig. 10 the result is a Möbius band.

Thus we see that in Step (3) above we have a choice for how to glue the left to
the right. This can be formalized as follows: given a homeomorphism f : F → F the
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Fig. 10 Building a Möbius band as a fibered manifold

mapping torus

F × [−1,1]/(x,−1) ∼ (
f (x),1

)

is an (n + 1)-manifold. For example, if F = S1 := {z ∈ C : |z| = 1} and f = id, then
the corresponding fibered 2-manifold is the torus. On the other hand, if F = S1 and
f (z) := z̄ where z ∈ S1, then the resulting fibered 2-manifold is the Klein bottle. It is
an entertaining exercise to try to visualize the latter construction.

Now we used up all 1-manifolds and all self-homeomorphisms of 1-manifolds.
This implies, that the list of fibered 2-manifolds we just constructed is complete.
Summarizing, even if we do not demand orientability, there are only four fibered
2-manifolds, namely the annulus, the Möbius band, the torus, and the Klein bottle.

The picture is quite different once we increase the dimension by one. In fact every
surface of genus greater than zero has many ‘different’ self-homeomorphisms, and
thus gives rise to infinitely many distinct fibered 3-manifolds.

Returning to the knot complements, very well-trained eyes can spot that the com-
plements of the first three knots of Fig. 6 are fibered (see e.g. [47, Chap. 10.I] for the
trefoil), whereas the complement of the knot 52 is not fibered. Even though in this
sample most knot complements are fibered, as so often, ‘small’ examples give the
wrong impression. In fact the complement of a ‘generic’ knot is not fibered. More
generally, Joseph Maher [33] showed that a ‘generic’ 3-manifold is not fibered.

4.3 Gluing Handlebodies

In the previous section we constructed 3-manifolds by a gluing construction. We will
now present a somewhat different gluing construction which was introduced by Poul
Heegaard at the beginning of the 20th century. We start out with two handlebodies
H and H ′ of the same genus. (A handlebody of genus g is the 3-manifold that is
bounded by the standard genus g surface in R

3 that is shown in Fig. 2.) We obtain a
closed 3-manifold by gluing H to H ′ along the respective boundaries. For example,
if we take H and H ′ to be handlebodies of genus zero, i.e. H and H ′ are copies of
the 3-ball, then this construction gives rise to S3.

This construction is of particular interest since one can show, surprisingly easily,
that any closed 3-manifold can be obtained from two handlebodies, using a suitable
gluing.
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5 Special Types of 3-Manifolds

In this section we will introduce Seifert manifolds and Haken manifolds. Both classes
of 3-manifolds will play a rôle in the subsequent sections. Nonetheless, if the reader is
already drowning in new definitions, then this section can safely be skipped at a first
reading. It suffices to know that both types of manifolds have ‘enough topology’ to
be amenable to classical methods. In particular Seifert manifolds have been classified
and Haken manifolds are relatively accessible.

5.1 Seifert Manifolds

A Seifert manifold, or alternatively Seifert fibered manifold, is defined as a ‘singu-
lar circle bundle over a surface’. Some of the 3-manifolds we are already familiar
with are Seifert manifolds. For example the solid torus, which can be viewed as a
disjoint union of circles, is a Seifert manifold. Also, the ‘Hopf fibration’ shows that
the 3-sphere is a Seifert manifold. With some practice one can also detect that the
complement of the trefoil is a Seifert manifold. But most knot complements, e.g. the
complements of the figure-8 knot and the knot 52, and in fact most 3-manifolds are
not Seifert.

For the remainder of the paper we are not concerned with the precise definition
of a Seifert manifold. What matters to us is that Seifert manifolds were completely
classified by Herbert Seifert, see [49], in 1933. In particular it follows fairly quickly
from the definitions that the 3-sphere is the only simply connected Seifert manifold.

5.2 Haken Manifolds

A 3-manifold M is said to be prime if it cannot be written as a ‘connected sum’ of
two manifolds M1,M2 �= S3. A 3-manifold M is called Haken if it is prime and if it
admits an incompressible surface, i.e. a surface F of genus ≥ 1 such that the inclusion
induced map π1(F ) → π1(M) is injective.

For example most fibered 3-manifolds are Haken. Indeed, let F be a surface of
genus ≥ 1 and let f : F → F be a self-homeomorphism, then F is an incompressible
surface in the corresponding fibered 3-manifold. More interestingly perhaps, basi-
cally every prime 3-manifold with boundary is Haken. In particular the complement
of any non-trivial knot is Haken. On the other hand, 3-manifolds with finite funda-
mental groups are non-Haken. There are also many examples of 3-manifolds with
infinite fundamental groups that are non-Haken, see e.g. [5] for references.

The reason Haken manifolds play such an important rôle in 3-manifold topology is
the fact that they always admit a hierarchy. This means that given a Haken manifold
M there exists a finite sequence of manifolds M = M1, . . . ,Mk such that each Mi

is obtained from the previous manifold Mi−1 by cutting along an incompressible
surface, and such that the final 3-manifold Mk is a union of 3-dimensional balls.
Many theorems for Haken manifolds have been proved by induction on the minimal
length of such a sequence.
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6 The Geometrization Theorem

In the previous sections we have seen all kinds of 3-manifolds, and at first glance
3-manifolds seem to form a rather confusing zoo. The question thus arises whether
one can restore some order by finding a classification scheme or a unifying theme. Up
to the mid 1970s the only 3-manifolds that were somewhat understood were Seifert
manifolds and Haken manifolds. Both types of 3-manifolds are amenable to purely
topological methods. But for the remaining manifolds one had no topological tools
to work with, and one had absolutely no idea how to study them.

Since purely topological methods failed to deliver, it is (in hindsight!) natural to
ask whether perhaps geometric methods can be brought to bear. For example, we had
previously seen that every closed surface admits a geometric structure, and that for
all but the two simplest closed surfaces one can exhibit hyperbolic metrics using a
fairly straightforward gluing construction. Is the situation similar for 3-manifolds?

For a long time it looked like the question should be answered in the negative. In
the first decades of the 20th century a few examples of hyperbolic 3-manifolds were
explicitly constructed by Hugo Gieseking [20], Frank Löbell [32] and Herbert Seifert
and Constantin Weber [50], but in the following 40 years no new examples of hy-
perbolic 3-manifolds were found. In the 1970s events suddenly took a dramatic turn.
First, to everybody’s surprise Robert Riley [45] showed that many knot complements,
and in particular the complement of the figure-8 knot, admit a hyperbolic structure.6

Shortly afterwards William Thurston [55, 56] formulated the Geometrization Con-
jecture, which in a slightly simplified form can be formulated as follows.7

Geometrization Conjecture Every 3-manifold admits a canonical decomposition
along a (possibly empty) collection of spheres and incompressible tori, such that
each of the resulting 3-manifolds is either a Seifert manifold or hyperbolic.

To get a better understanding of the Geometrization Conjecture let us look at sev-
eral examples which were already known by the time it was formulated. We have al-
ready seen several examples of Seifert manifolds and hyperbolic manifolds. In these
cases one evidently does not need to decompose any further to obtain the desired re-
sult. More interestingly, if we glue the complement of the trefoil to the complement
of the figure-8 knot along the boundary tori, then the resulting manifold is neither a
Seifert manifold nor hyperbolic. But if we cut this manifold along the gluing torus,
then the two resulting components are of course the complement of the trefoil and
the complement of the figure-8 knot. Put differently, decomposing along a torus we
obtain two 3-manifolds, one of which is a Seifert manifold and one of which is hy-
perbolic.

As we mentioned in the introduction, the Geometrization Conjecture implies the
Poincaré Conjecture. It is a custom in mathematics talks to provide at least one proof.

6Riley [46] points out that the complement of the figure-8 knot is in fact the 2-fold cover of Gieseking’s
example. Hugo Gieseking was killed in France in 1915, shortly after his work on hyperbolic 3-manifold.
It is conceivable that hyperbolic structures on knot complements would have been discovered much earlier
if it had not been for World War I.
7For knots the conjecture was foreshadowed by Riley, see [46] for Riley’s account.
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We will do the same here, and we will quickly outline why the Geometrization
Conjecture implies the Poincaré Conjecture: Let M be a simply connected closed
3-manifold and suppose the Geometrization Conjecture holds. Some basic algebraic
topology quickly implies that the decomposition of M provided by the Geometriza-
tion Conjecture has to be trivial. Put differently, M is either already a Seifert manifold
or a hyperbolic manifold. In Sect. 3.1 we already pointed out that the fundamental
group of a hyperbolic manifold is infinite. It remains to deal with the former case. But
as we already mentioned in Sect. 5.1, the classification of Seifert manifolds readily
implies that M is indeed the 3-sphere.

The first major step towards a proof of the Geometrization Conjecture was
Thurston’s ‘Monster Theorem’ from the late 1970s, namely the proof of the Ge-
ometrization Theorem for Haken manifolds. As we hinted at in the previous section,
the proof uses an induction argument on hierarchies. But along the way Thurston also
introduced a wealth of new concepts and ideas, many of which developed into major
fields of study in their own right. William Thurston was awarded the Fields medal
in 1983,8 but it took about 20 years and the efforts of many authors for all details to
be written down rigorously. It is worth reading Thurston’s interesting argument [57]
why he did not provide the detailed proof himself.

The full proof of the Geometrization Conjecture was finally given by Perelman
[39–41] in 2003 using the Ricci flow on Riemannian metrics, building on ideas pio-
neered by Richard Hamilton [25]. A detailed exposition of Perelman’s proof is pro-
vided by John Morgan and Gang Tian [35], also an accessible outline of the ideas is
given by Klaus Ecker [13] in an earlier Jahresbericht. Perelman declined the Fields
medal which was awarded to him in 2006. He also declined the $1,000,000 prize
offered to him by the Clay Institute for solving one of the seven Millenium Prize
Problems.

It is impossible to overstate the importance of the Geometrization Theorem to
3-manifold topology. Not only does it resolve the Poincaré Conjecture, but it un-
derpins almost every deep result on 3-manifolds. For example, it lies at the heart of
the algorithm which can determine whether or not two given closed 3-manifolds are
homeomorphic. (We refer to [6] for precise references.)

7 The Virtual Fibering Theorem

The Geometrization Theorem says that any 3-manifold can be canonically decom-
posed into Seifert manifolds and hyperbolic manifolds. In fact, in a precise sense
a ‘generic’ 3-manifold does not need to be decomposed: it is already hyperbolic.
(We refer to [5, Sect. 1] for references.9) Thus we see that hyperbolic 3-manifolds

8The ICM took place in 1983 in Warsaw. It was of course supposed to take place in 1982 but it was
postponed by one year because of martial law in Poland which was in effect from December 1981 to July
1983.
9Interestingly the phenomenon that ‘most objects are hyperbolic’ also occurs in the context of group
theory. Mikhail Gromov [21] showed that in a precise sense a generic finitely presented group is ‘word
hyperbolic’.



The Virtual Fibering Theorem for 3-Manifolds 237

Fig. 11 The twice twisted band
is a 2-fold cover of the Möbius
band

lie at the heart of 3-manifold topology. The question thus arises, what can we say
about the topology of hyperbolic 3-manifolds? As we mentioned before, the generic
hyperbolic 3-manifold is not fibered and very many hyperbolic 3-manifolds are non-
Haken. This is bad news for us 3-manifold topologists, since this means that there is
little ‘topology to work with’ in the manifold. For example, the absence of an incom-
pressible surface means that we cannot do our favorite trick of cutting 3-manifolds
along surfaces into ‘smaller’ pieces.

Thurston [56] and Waldhausen [59] speculated that perhaps the picture is very
different, once we are allowed to consider finite-sheeted covers. Here, loosely speak-
ing, a manifold M̃ is an n-fold sheeted cover of another manifold M if there exists a
continuous map p : M̃ → M such that the preimage of each point in M consists of
precisely n points in M̃ . In Fig. 11 we see that a twice-twisted band (which is nothing
but the annulus) is a 2-fold cover of the Möbius band. The notion of a finite-sheeted
cover admittedly takes a while to get used to. Suffice it to say, once one gets one’s
head around it, it is a very natural and central concept in topology and geometry.

In the following we say that a manifold virtually has a certain property, if it ad-
mits a finite-sheeted cover which has this property. For instance, as we saw above,
the Möbius band is virtually an annulus. Similarly we say that a group virtually has
a given property, if it admits a finite index subgroup which has that property. For
example, every finitely generated abelian group is virtually torsion-free.

With this definition we can now restate Thurston’s question from the introduction
as follows:

Is every hyperbolic 3-manifold virtually fibered?

The formulation of this and closely related questions in [56] led to many decades of
intense research, an overview of the results is given in [30], [5, Sect. 5.9] and [37].
But it seems fair to say that progress was limited. In fact there did not even emerge
a consensus on whether one expects an affirmative or a negative answer to the above
question. The first major step forward finally happened in 2007 when Ian Agol [2]
proved the following theorem.

Theorem A If M is a prime 3-manifold such that its fundamental group π1(M) is
infinite and virtually ‘RFRS’, then M is virtually fibered.
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Here the acronym ‘RFRS’ stands for ‘residually finite-rationally solvable’, which,
in all likelihood, for most readers is not particularly enlightening. In fact the precise
definition of RFRS is of no concern to us. But suffice it to say that being RFRS is
a very strong condition on the fundamental group of M . In fact it is so strong that
at least the author of this article initially thought that the theorem would apply to a
minuscule number of 3-manifolds.

It quickly turned out that this assessment was far of the mark. In 2009 Dani Wise
[61–63] announced a proof, which eventually turned out to be nearly 200 pages long,
that the fundamental groups of ‘most’ Haken hyperbolic 3-manifolds are virtually the
fundamental group of a ‘special cube complex’. Frédéric Haglund and Dani Wise [23]
and Ian Agol [2] in turn showed that fundamental groups of special cube complexes
are virtually RFRS. The proof given by Wise, once again, used a particularly intricate
argument based on hierarchies. Wise’s proof was a tremendous achievement, but non-
Haken manifolds still seemed intractable.

At the same time, in a completely independent development, Jeremy Kahn and
Vlad Markovic [27] used dynamics on hyperbolic 3-manifolds to show that funda-
mental groups of closed hyperbolic 3-manifolds have ‘lots’ of surface subgroups. By
work of Nicolas Bergeron and Dani Wise [8] and Michah Sageev [48] this implies
that the fundamental group of any closed hyperbolic 3-manifold is the fundamental
group of a ‘non-positively curved cube complex’. In light of the aforementioned re-
sult of Haglund and Wise [23] the challenge now became to promote a ‘non-positively
curved cube complex’ to a ‘special cube complex’.

This challenge could be formulated as a problem in geometric group theory,
which a priori has nothing to do with 3-manifold topology. It was finally once again
Agol [3], building on deep theorems of Wise [62, 63], who rose to the challenge in
2012.10 Putting the results of Agol [3] and Wise [61–63] together gives us the fol-
lowing theorem.

Theorem B The fundamental group of any hyperbolic 3-manifold is virtually RFRS.

Finally, the combination of Theorems A and B gives us the desired affirmative
answer to Thurston’s question.

The Virtual Fibering Theorem Every hyperbolic 3-manifold is virtually fibered.

The results of Agol and Wise were rounded off by Piotr Przytycki and Dani Wise
[44] who showed that Theorem B in fact holds for ‘most’ non-hyperbolic 3-manifolds
as well.

As happens so often when an important long-standing conjecture is finally proved,
the eventual proof of the Virtual Fibering Theorem delivered much more than just an
answer to the initial question. In a recent book by Matthias Aschenbrenner, the author
and Henry Wilton [5] it takes very dense 13 pages to just list all of the immediate

10It is characteristic of Ian Agol’s unassuming character that the first time he publicly mentioned this result
was towards the end of an introductory lecture for graduate students in Paris. Thanks to the digital camera
of the author and a blog the news of Agol’s theorem spread across the world of 3-manifold topologists
within a few hours [60].
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consequences of the work of Agol, Przytycki and Wise. Among them, the author’s
favorite implication is that the fundamental group of any hyperbolic 3-manifold M is
linear over the integers, i.e. π1(M) embeds into GL(n,Z) for a suitable n. This result
is totally unexpected; nobody had even dared to conjecture it before it was proved.

The results of Agol and Wise have produced a seismic shift in our understand-
ing of 3-manifolds and related fields. For example, besides direct applications to
3-manifolds [16, 54] there have already been applications to the Cannon Conjec-
ture [34], free-by-cyclic groups [22], and 4-manifolds with a fixed-point free circle
action [10, 17, 18]. Certainly there will be many more applications in the near future,
and it will surely take several years before the full impact of the work of Agol and
Wise has been absorbed.

8 Thurston’s Last Challenge

The field of 3-manifold topology has now undoubtedly developed a certain matu-
rity. Nonetheless there are still many basic questions that are wide open. Already
the subfield of knot theory bursts with easy-to-state but depressingly hard-to-answer
questions. For example, it is still unknown whether the Jones polynomial, first in-
troduced by Vaughan Jones [26] in 1985, detects the trivial knot. A weaker version
of this question was recently answered by Peter Kronheimer and Tom Mrowka [29]
in a major tour de force using Instanton Floer Homology. Many more ‘elementary’
knot theoretic questions and conjectures are given in a recent survey by Marc Lack-
enby [31].

We want to conclude this article with the formulation of the one challenge of
Thurston’s that is still open. In order to do so we first note that a hyperbolic metric
gives us naturally a notion of a volume. A priori this volume depends of course on
the choice of the hyperbolic metric. In Sect. 2.3 we had hinted at the fact that most
surfaces admit many non-pairwise isometric hyperbolic metrics. Amazingly the sit-
uation is radically different in dimension 3: George Mostow [36] and Gopal Prasad
[43] showed that all hyperbolic structures on a given 3-manifold are isometric. In
particular the volume of a hyperbolic 3-manifold is independent of the choice of the
hyperbolic structure.

Now we can finally quote Thurston’s remaining challenge:

Show that volumes of hyperbolic 3-manifolds are not all rationally related.

Put differently, the challenge is to find two hyperbolic 3-manifolds N and M such
that the ratio of the volumes is not a rational number. This challenge is related to very
hard number theoretic problems, which explains why it has not been answered yet. In
fact we know so little about volumes of hyperbolic 3-manifolds that it is still unknown
whether there exists a hyperbolic 3-manifold such that the volume is rational (or ir-
rational). A short discussion of this challenge can be found in the aforementioned
article by Jean-Pierre Otal [37].
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The French mathematical literature has a long tradition of
extensive textbooks in mathematical analysis, which seems
to have started with the publication of more or less extended
versions of the lectures given at the École polytechnique,
and later in Faculties of Science. Let us just mention the
most famous ones published in the XIXth century by La-
grange, Lacroix, Cauchy, Sturm, Bertrand, Hermite, Jordan
at the École polytechnique, and by Picard and Goursat at the
Faculty of Science of Paris.

The corresponding Belgian production is less impres-
sive, started later and is dominated by the Cours d’analyse
infinitésimale of Charles-Jean de La Vallée Poussin (1866–

1962) (in short VP), a two-volumes set, which remains famous (like its author!) for
an exceptionally long life and for its international influence, both consequences of its
innovative, elegant and rigorous character. This book remained until 1970 the basis
for the course on differential and integral calculus of the first two years of studies
leading, at the Université Catholique de Louvain, either to the degree of docteur en
sciences physiques et mathématiques (later licencié en sciences mathématiques and
licencié en sciences physiques) or to the degree of ingénieur civil. The engineer can-
didates formed the majority of the class population, and the content and level of the
course was a compromise between the wishes of the pure and of the applied users of
the material.

VP, who remains famous for his proof (independently of Jacques Hadamard
(1865–1963)) of the prime number theorem, and for his original contributions to in-
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tegration, Fourier series, approximation theory, conformal maps and potential theory,
graduated in engineering at the Université Catholique de Louvain in 1890, and in
mathematics and physics in 1891. He was called by the same university in October
1891 to replace Louis-Philippe Gilbert (1832–1892), who was ill, for the course of
differential and integral calculus. Gilbert died in 1892, and, from this moment, VP
was in charge of those lectures until 1935 (see [24, Vol. 1] for more details).

Gilbert had already traced the way by publishing several editions of a Cours
d’analyse infinitésimale. Partie élémentaire [26], covering his lectures on differential
and integral calculus. If the 1st edition (1872) was still defining continuity through
the intermediate value property, and claimed its equivalence with Cauchy’s definition
as well as the differentiability of any continuous function, all this was amended in the
2nd edition (1878), where Darboux’s example of a nowhere differentiable continuous
function was presented. The 3rd edition (1887) incorporated the recent advances made
in Germany on the foundations of analysis and Gilbert, in the Préface, defended the
opinion that rigor is not the enemy of simplicity. The posthumous 4th edition (1892),
used by VP during several years as a support of his lectures, was replaced in 1898–
1899 by a mimeographed Cours d’analyse infinitésimale in two volumes [3], that can
be seen as the “zeroth edition” of VP’s famous book. The order and presentation of
the material remained very close to the last edition of Gilbert’s treatise.

1 The First Edition (1903–1906)

Volume I of the 1st edition of VP’s Cours d’Analyse infinitésimale [9], was published
in 1903, in a format motivated in the Preface by its author who explains that

this book [. . . ] must serve together the future engineers and the students prepar-
ing the doctorate. To reach this double aim, we have adopted two different
types. The text in large ones for the beginners, the one in small types providing
to the preceding one all the necessary complements for advanced studies. In the
text in large types, the questions are presented in their most elementary form,
without never renouncing to rigor. They are reconsidered in the text in small
types [. . . ] under the most general viewpoint. [. . . ] The text in large types of
this first volume contains the material of the lectures of the first year.

The end of the Preface reveals that the sources of the author’s inspiration are

the Cours d’analyse of Mr. C. Jordan, the one of our former master Ph. Gilbert,
so remarkable by its qualities of exposition, and also the Leçons sur les appli-
cations géométriques de l’analyse by M. Raffy.

Several of the first papers of VP had been motivated by correcting some mistakes in
the 1st edition of the Cours d’analyse of Camille Jordan (1838–1922), who acknowl-
edged him in the Preface of Volume 2 of the substantially modified 2nd edition of his
Cours.

We had given for the conditions under which the differentiation under the sign∫
is legitimate an inexact assertion. Trying to correct this error, that M. de la
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Vallée Poussin had mentioned to us, we have been led to discuss in detail the
essential propositions concerning the definite integrals.

A first noticeable difference with the mimeographed edition is the larger space de-
voted, in the introductory part, to the theory of real numbers, based upon Dedekind’s
cuts, followed by a much more precise and detailed study of the continuous functions
of one or several variables and their properties. There is little novelty in the chap-
ters on differentiation. One should notice that, the author “proved” the chain rule for
f [x(t), y(t)] under the too weak assumptions that f (x, y) has partial derivatives, and
x(t) and y(t) are differentiable, leading to some imprecision in stating the validity
conditions for Taylor’s formula. An important addition is a precise study of the ex-
istence and uniqueness of implicit functions, using the intermediate value property
for one unknown function followed by induction on the dimension. This is applied,
in small types, to a rigorous presentation of Lagrange multipliers for constrained ex-
trema.

In the presentation of definite simple integrals, Darboux’s approach for Riemann
integral is used, with, in small types, a general version of the rule of change of
variables, and a thorough treatment of Darboux lower and upper integrals. Further
conditions for Riemann integrability require considerations on the topology of one-
dimensional sets and their Jordan’s measurability. At this occasion, the characteristic
function e of a bounded set E is introduced, and Jordan’s outer and inner lengths of E

are respectively defined as the upper and the lower integral of e over some [a, b] ⊃ E.
As noticed by Hawkins [29],

this connection between measure and integration could not have been stated
more clearly.

In the applications of calculus to the geometry of curves and surfaces, an ori-
entation is given to the binormal of a curve in space, which provides a sign to the
torsion. After a classical presentation of the length of a curve, Jordan’s viewpoint
based upon functions with bounded variation is adopted and a new proof of Jordan’s
theorem for simple closed curves is given, with applications to curvilinear integrals.
The last chapter, devoted to series, contains Bertrand’s logarithmic criteria and du
Bois-Reymond’s theorem on the impossibility of constructing a complete scale of
convergence and divergence. Weierstrass’ example of nowhere differentiable contin-
uous function is presented, and completed in VP’s paper [8].

The 1st edition of Volume 2 of the Cours d’analyse infinitésimale [11] came out
in 1906. In the Avertissement, it is said that one begins

by presenting the theory of double integrals, of improper integrals, and in par-
ticular of Eulerian integrals in the simplest possible way, [. . . ] rather different
from the classical one, but equally natural for students.

This is essentially an approach, for continuous functions of two variables, by two
successive simple integrations, followed by showing its equivalence to the limit of
some double sums. Triple integrals are defined in a similar way. Special attention
is paid to Jacobians and change of variable in multiple integrals. Three definitions
are given for the area of a surface, and the reduction formulas of volume integrals
into surface integrals and of surface integrals into line integrals are proved with care,
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but in a rather literary way. A more general study of multiple integrals using again
Darboux’s approach is printed in small types, following the required properties of the
sets of integration and their Jordan’s measurability.

For improper simple integrals, the distinction between convergence and absolute
convergence is introduced. In the case of improper double integrals, special attention
is paid to their reduction to simple ones, a topic to which VP contributed in 1899
[7]. His results [5] from 1892 on the uniform convergence of parametric improper
integrals are also presented.

The substantial part of the volume devoted to ordinary differential equations starts
with an original way of solving Cauchy’s problem y′ = f (x, y), y(x0) = y0, when f

and f ′
y are continuous near (x0, y0). The idea consists in constructing step by step,

for every α > 0, an approximate solution by the formula

ϕ(x0) = y0, ϕ(x) = y0 +
∫ x

x0

f
(
s, ϕ(s − α)

)
ds,

and showing that its limit for α → 0 is a solution of the Cauchy problem. Redis-
covered in 1925 by Leonida Tonelli (1885–1946) [44], this approach now bears his
name. In the explicit integration of special differential equations, the discussion of
Riccati’s equation is more developed than in most textbooks. The treatment of linear
differential equations and systems is rather standard, except for an unusual attention
paid to Bessel’s equation, and the same is true for the short introduction to first order
partial and total differential equations.

A completely new chapter with respect to the mimeographed version is entitled:
“Special questions: circular and Eulerian functions. Fourier series”. One finds there
the expression of circular and hyperbolic functions as infinite products and series
of fractions, Bernoulli’s numbers and polynomials, and a very detailed treatment of
Euler’s Beta and Gamma functions. Their use in analytic number theory may have
motivated this choice, and most sections are printed in small types. Trigonometric
and Fourier series are presented following Dirichlet’s approach, and Cantor’s unique-
ness theorem of the trigonometric expansion is proved. To respect Belgian official
programs, the volume ends with chapters on the calculus of variations and the cal-
culus of differences (including Euler’s summation formula). A study of the singular
points of planar curves and of the curves defined on surfaces concludes the volume.

The Avertissement of Volume 2 ends by observing that

this volume having taken considerable proportions, we have renounced to in-
clude the principles of the theory of functions of a complex variable. We hope
to be able to publish this theory later with other questions.

This should take place in a Volume 3 announced several times but never published.
The restriction to functions of real variables remained a characteristic distinction of
VP’s treatise, with respect to the other more or less contemporary French ones by
Jordan, Émile Picard (1856–1941), Édouard Goursat (1858–1936), Georges Humbert
(1859–1921), René Baire (1874–1932), and others.
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2 The Second Edition (1909–1912)

Presenting the second edition of the Cours d’analyse infinitésimale as “considerably
reworked” is not an understatement. In the Preface of Volume I, VP, after recalling
that the structure and the use of different types was conserved,

will not insist on the many modifications made to our first redaction and will
only mention here the main one. The theory of definite integrals has been
completely renewed, since our first edition, by the beautiful writings of M.
Lebesgue. We have thought necessary to introduce in this course the fundamen-
tal results obtained in this new way; but we have rather considerably modified
the proofs of the author, in order to eliminate the notion of transfinite, which
has not yet entered our teaching methods.

This introduction in a textbook of the new integral introduced in 1902 by Henri
Lebesgue (1875–1941) [33] requires a deeper study of set theory. The introductory
part is completed, in small types, by a description of the cardinality of sets and of per-
fect sets. In the chapter on differentiation, the Dini derivatives are considered, includ-
ing Scheeffer’s theorem. For definite integrals, Darboux’s presentation of Riemann
integral is now followed by measure theory in the real line according to Émile Borel
(1871–1956) and Lebesgue, starting with Borel-Lebesgue’s lemma and its conse-
quences. The exterior and interior measures are introduced, as well as Borel measur-
able sets. A necessary and sufficient condition for measurability is proved, followed
by the properties of measure with respect to the operations on sets. Measurable real
functions of a real variable are defined through the measurability of the counter-image
of intervals.

The integral for bounded measurable functions is introduced following Lebesgue’s
division of the range of the function. Two definitions for the extension to unbounded
functions are proposed, including the cut-off procedure introduced by VP in [5] for
improper absolute integrals. The existence of primitives for not necessarily continu-
ous functions follows a new way, whose interest was underlined by Lebesgue himself
in his 1910 memoir on integration of functions of several variables [34], recalling that

in my Leçons sur l’intégration, where I treated the case of one variable, to
compare the indefinite integral of f (x) to a function F(x) assumed to exist
and having f for derivative, I tried to evaluate F(b) − F(a) − ∫ b

a
f (x) dx, a

and b arbitrary and fixed, by replacing the curve F(x) = y by a polygonal line
circumscribed for which, consequently, one can define the sides using f (x).
[. . . ] M. de la Vallée-Poussin proceeds differently; he compares the function
F(x), x variable, to the indefinite integral

∫
f (x)dx using theorems which

generalize the fundamental theorem: two functions having everywhere the same
derivative only differ by a constant, or Ludwig Scheeffer’s theorem. To do this,
M. de la Vallée-Poussin uses functions close to

∫
f (x)dx chosen in such a way

that one knows their derivative almost everywhere. This a method imitated from
the one of M. de la Vallée-Poussin that I use here. I consider as an advantage of
this method to require only a minor study of the functions of several variables.
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The remaining of Volume I is essentially unchanged with respect to the 1st edi-
tion. The section on rectifiable curves is enriched by Lebesgue’s result about the dif-
ferentiability almost everywhere of continuous functions having bounded variation,
and the formula for the length as a Lebesgue integral. The chapter on series contains
Arzelá’s quasi-uniform continuity and Lebesgue’s theorem on the integration of sums
of series of integrable functions.

In the Preface to the 2nd edition of Volume II, VP explained that

the whole redaction of Volume II has seen more or less deep modifications,
but the most important one follows from the introduction of the multiple inte-
grals of M. Lebesgue. We have presented this theory following the fundamen-
tal memoirs of the author and we have been led to treat a new question which
provides interesting applications of it, namely the development of functions in
series of polynomials. Furthermore, the theory of trigonometric series, which
owes also to M. Lebesgue its most important advances, has been completely
rewritten and adapted to the level of the present knowledge. However, because
of lack of space, we have sacrified the theory of Eulerian integrals contained in
the first edition.

The revision starts with Chapter III, now entitled “Multiple integrals of Riemann
and Lebesgue”. Measure theory and Lebesgue integral follow the lines of the one-
dimensional case, with the additional property that a bounded measurable function
can be arbitrary closely approximated by a continuous one outside of a subset of
arbitrary small measure. This result is generally attributed to Nikolai N. Lusin (1883–
1950), but Lusin’s note [35] is dated June 17, 1912 and VP’s Volume II, May 15,
1912, so that the contributions are independent.

The study of indefinite multiple integral follows the two years old memoir of
Lebesgue [34]. The indefinite integral of an integrable function f on E is defined on
measurable subsets e ⊂ E, with measure m(e), by F(e) = ∫

e
f (x) dx, and provides

an example of countably additive and absolutely continuous set function (F(e) → 0
when m(e) → 0). The study of its derivative requires the introduction of Vitali’s cov-
ering theorem. The derivative of F in restricted sense at x is the limit of F(γ )/m(γ ),
where γ is a ball centered at x whose radius tends to zero. The general derivative of F

at x is the limit of F(ω)/m(ω) when ω is a measurable set containing x whose mea-
sure tends to 0 in such a way that the ratio of m(ω) with the measure of the smallest
ball γ ⊃ ω remains bounded away from zero (regularity condition). The main result
is Lebesgue’s theorem stating that a countably additive and absolutely continuous set
function has a unique finite derivative almost everywhere and is the indefinite inte-
gral of this derivative. Lebesgue-Fubini’s reduction theorem for multiple integrals,
which takes its most elegant and general form within Lebesgue integration theory, is
followed by the Leibniz rule for differentiation under the integral sign and the Green
formula in the same setting.

The approximation of functions by polynomials is treated in Chapter IV. For a
continuous function f on [a, b] with, without loss of generality, 0 < a < b < 1, the
nth approximating polynomial Pn is defined by the integral formula

Pn(x) = 3 · 5 · . . . · (2n + 1)

2(2 · 4 · . . . · 2n)

∫ b

a

f (u)
[
1 − (u − x)2]n du.
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This integral, that VP thought to be new when he introduced it in 1908 [13], had
been considered a few months earlier by Edmund Landau (1877–1938) for the same
purpose [32]. For a Lebesgue integrable function f , the theorem of Frederic Riesz
(1880–1956) [40] that Pn(x) converges to f (x) at any point where f (x) is the deriva-
tive of its indefinite integral (and hence almost everywhere) is proved. The approx-
imation of functions of several variables is also considered with, for Lebesgue inte-
grable functions, a variant of a recent theorem of Leonida Tonelli (1885–1946) [43].

Chapter IV ends with the study of trigonometric and Fourier series, completing the
1st edition, in small types, by the important advances made by Lebesgue and others
using the new integral. To Dini’s and Jordan’s convergence criteria of the Fourier
series of f , VP added the one he published in 1911 [16], on the convergence to the
limit for α = 0 of (1/2π)

∫ α

0 [f (x + α) + f (x − α)]dα, at any point x such that
this function has bounded variation in α in a small interval [0, ε]. The summation
of divergent Fourier series uses essentially Fejér’s method, both for continuous and
Lebesgue integrable functions. The new summation method introduced by VP in [13]
is only mentioned. Follows Parseval formula for L2-functions, du Bois-Reymond and
Lebesgue singularities for continuous ones. Cantor’s uniqueness result is completed
by recent results of Lebesgue.

The space given to the integration of total differential equations is tripled with
respect to the 1st edition and includes VP’s results in [12]. The remaining of Volume II
is essentially unchanged, except that Bernoulli’s numbers and polynomials appear in
the chapter on difference equations. When discussing the envelopes of planar curves,
VP’s complete treatment given in [14] is quoted.

This 2nd edition of VP’s Cours d’analyse is, in 1912, the only textbook on analysis
containing both Lebesgue integral and its application to Fourier series, and a general
theory of approximation of functions by polynomials.

3 The Third Edition (1914) and Its “Ghost” Volume II

Once more, the Avertissement to the 3rd edition of Volume I, published in the Spring
of 1914, summarizes the modifications introduced there. The first one concerns dif-
ferentiability where one has

abandoned the old definition of the total differential and adopted Stolz’ one
[41]. Its superiority has been emphasized by the works of MM. S. Pierpont
[sic] [37], Fréchet [25] and mostly W. H. Young [46].

In 1893, in Volume I of a remarkably modern book on differential and integral calcu-
lus [41], Otto Stolz (1842–1905), a former student of Weierstrass, had defined for the
first time the modern concept of (total) differential of a real function f of n variables
at a point x, equivalent to classical differentiability when n = 1, and lying between
the existence of the partial derivatives at x and their continuity at x when n > 1. In
VP’s own terminology, the function u(x, y) is differentiable at (x, y) if it is defined in
a neighborhood of this point and if its variation �u = u(x + �x,y + �y) − u(x, y)

can be decomposed in two parts (A�x + B�y) + (|�x| + |�y|)ε, with A and B

independent of �x and �y, and lim|�x|+|�y|→0 ε = 0. As observed by VP in his
Avertissement, its
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superiority [. . . ] is unquestionable: the theorems follow more directly from the
principles, the theory of differentiation of explicit and implicit functions be-
comes sharper, and, consequently, more satisfactory.

The (justified) enthusiasm of VP led him to the following version of the im-
plicit function theorem, attributed to William H. Young (1863–1942): given n Func-
tions F1, . . . ,Fn of the m + n variables (x, y, . . . , u, v,w, . . .) which vanish, are to-
tally differentiable, and have a non-zero Jacobian with respect to the u,v,w, . . . at
(a, b, . . . , u0, v0,w0, . . .), there exists at least a system of functions u,v,w, . . . of
(x, y, . . .) equal to u0, v0,w0, . . . at (a, b, . . .), and satisfying identically the equa-
tions F1 = 0, . . . ,Fn = 0 in a neighborhood of this point. This result is proved for
n = 1 using Bolzano’s intermediate value theorem, which is correct, but VP’s induc-
tion argument to go from this result to arbitrary n is not. A correct proof requires
more sophisticated tools, like Brouwer’s fixed point theorem. Notice that, despite of
VP’s generous attribution, this generalized implicit function theorem can hardly be
found in [46].

The other substantial modification in the 3rd edition of Volume I of the Cours
d’analyse concerns advanced measure and integration. The main lines are again sum-
marized in the Avertissement.

We have moved to the introductory part, and simplified, measure theory, previ-
ously located in the chapter on definite integrals. We have completely reworked
the theory of Lebesgue integral, but conserved the processus we had previously
introduced to go from the derivative to the primitive. [. . . ] Its use occurs in two
new sections, one devoted to the problem of change of variables in a definite
integral, which seems to receive here its definitive solution, the other one to the
search of the primitive of a generalized second order derivative, fundamental in
the theory of Fourier series.

For Lebesgue integration, much more emphasis is put on the limit process under the
integral sign, with the dominated convergence and the monotone convergence theo-
rems. For the search of primitive functions, VP’s original approach of the 2nd edition
is developed by expliciting the concepts of major (minor) functions of a Lebesgue
integrable function f on [a, b]. They are continuous functions, infinitely close from
above (below) to

∫ x

a
f (t) dt , having Dini derivatives greater (smaller) than f (x) at

any point where f is finite. They are used to express, for a function F having bounded
variation on [a, b], F(b) − F(a) in terms of

∫ b

a
F ′(x) dx and the total variation of F

in the set of points where F ′ is not determined or infinite (VP’s decomposition the-
orem), and to show that the absolute continuity of F is necessary and sufficient for
being the indefinite integral of its derivative. Generalizations of the major and minor
functions have been the starting point of Oskar Perron (1880–1975), for introducing
in 1914 his generalization of Lebesgue integral [36].

The Encyclopédie des sciences mathématiques (t. II, vol. 1, p. 100) having re-
proached to VP’s original proof of Jordan’s theorem for a closed simple curve “to be
only indicated”, details are added, “to which one can give a pure arithmetical sense”.
The volume ends with an “Addition to Volume II (2nd edition)”, describing VP’s
recent results [17, 18] on the uniqueness of the expansion of a function in trigono-
metrical series.
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The 3rd edition of Volume II of the Cours d’analyse infinitésimale never appeared.
A brief explanation is given in the Introduction of VP’s paper of 1915 on Lebesgue
integral [20] which recalls that

many of the obtained results [. . . ] were already printed in August 1914 and
were supposed to appear at the end of this same year in the 3rd edition of Vol-
ume II of my Cours d’analyse. All that has been burnt in Louvain with many
other more precious things.

During World War I, the German troops invading Belgium reached Louvain ion
August 19, 1914. Alleging the activity of franc-tireurs whose existence was never
proved, they reacted in a very brutal way. In particular, they set fire to the old buildings
of the University of Louvain during the night of August 25, destroying completely the
library and its precious collections. The Uystpruyst printing house publishing VP’s
Cours d’analyse, next to the library, burnt as well, including the material related to
the 3rd edition of Volume II. VP left Belgium until the end of the war, as, succes-
sively, guest professor at Harvard University, the Faculty of Science and the Collège
de France in Paris, and the University of Geneva. In Paris, he published his famous
monograph on Lebesgue integral [21], repeating in its Introduction the story of the
3rd edition of Volume II of the Cours d’analyse.

For a long time, the last three sections of [20] on multiple Lebesgue integrals re-
mained the unique source for guessing the evolution of the corresponding chapter in
this lost 3rd edition. The main novelty was the concept of derivative on a dyadic net,
for completely additive set functions having bounded variation, which, as mentioned
by VP, developed a remark made in passing by Lebesgue in [34]. This notion allowed
to prove generalizations of the decomposition theorem of Volume I, and to apply it to
continuous functions of two variables having bounded variation. The last section of
[20] treated the change of variables in double integrals, where, again, Stolz’ differen-
tiation was used,

showing its superiority, once more, in the present question.

Some years ago, when I was working with Paul Butzer and Pasquale Vetro on
the publication of the Collected Works of VP [24], a great-grandson of the Belgian
mathematician showed me a collection of galley proofs he was keeping in memory
of his great-grandfather. He kindly allowed me to study them and copy what could be
interesting. Most corresponded to published material, but a careful analysis showed
me that some where galley proofs of parts of the 3rd edition of Volume II of the Cours
d’analyse. They covered the end of chapter II on improper integrals and exact differ-
entials, the whole Chapter III on multiple integrals and the beginning of Chapter IV
on the analytical representation of functions and Fourier series. Other ones were gal-
ley proofs of the 2nd edition of the remaining part of Chapter IV, annotated by VP for
the 3rd edition. With this material, that I hope to publish in the future, it is possible to
reconstruct the most original part of the “ghost” edition.

With respect to the 2nd edition, Chapter II is enriched by VP’s extension [19] of
Goursat’s technique [27] for proving Cauchy’s integral theorem, to the obtention of
necessary and sufficient conditions for the line integral of P dx + Qdy, with P and
Q totally differentiable, to depend only upon its extremities. In Chapter III, the main
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addition is the derivative on a dyadic net of additive functions with bounded variation,
similar to the one in [20]. The section on change of variables in integrals is the one
given in the 2nd edition, except mentioning that the proof comes from VP’s paper
[15].

For Chapter IV, the modifications are essentially stylistic or consist in adding a few
computational details. The reference to VP’s memoir [13] is added to the theorem of
the approximation of the derivatives of the function by the derivatives of polynomials.
The addition to the 2nd edition of Volume II given in the 3rd edition of Volume I,
mentioned above, becomes the last section of Chapter IV. A beautiful analysis of the
contributions of VP to Fourier series, including the evolution of their treatment in the
Cours d’analyse, is given by Jean-Pierre Kahane on pp. 573–586 of [24, Vol. 3].

Another collateral damage of World War I to VP’s Cours d’analyse is that its
German translation, planned just before the war, never materialized.

4 The Fourth (1921–1922) and Subsequent Editions

One could think a priori that the loss of the 3rd edition of Volume II would have been
compensated by the publication of the 4th edition. That it is not the case is explained
in the Avertissement to this edition of Volume I.

The printing of Volume I, started in 1919, has met, at the beginning, serious
material difficulties. To save time, I have suppressed the questions printed in
small types in the old edition and, in particular, the theories related to Lebesgue
integral, that I hope to include in a third volume.

The Avertissement to 4th edition of Volume II is more precise.

The 3rd edition of Volume II of this Cours d’Analyse was burnt in Louvain
in 1914 before its completion and never came to light. It contained a rather
extended contribution to set theory and Lebesgue integral. Since this time,
I returned to those questions and I have published [. . . ] my book Intégrales
de Lebesgue, fonctions d’ensemble, classes de Baire (Paris, Gauthier-Villars,
1916). For the reasons I have given in the Avertissement of Volume I, those
questions have been kept apart from the present volume, but maybe will find
place with other ones in a Volume III.

This planned Volume III never appeared. With the 4th edition, VP’s Cours d’analyse
more or less returned to the content of the 1st edition and remained essentially un-
changed in the many subsequent editions, except for the applications of analysis to
geometry, as described later, and for a more classical approach to Cauchy’s existence
theorem for differential equations. The elegance and rigor of the style had not been
lost, but most of the XXth century material had disappeared. In Volume II, the chapter
on Eulerian integrals of the 1st edition, suppressed in the 2nd one, was reintroduced,
and, for Bessel equation, VP’s paper of 1905 [10] on its integration in finite terms
was mentioned.

Because of the absence of the 3rd edition of Volume II, the best available complete
set for the Cours d’analyse infinitésimale is the 3rd edition of Volume I (1914) joined
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to the 2nd edition of Volume II (1912). They have been translated in Russian, and have
been reprinted in 2003 by Gabay in Paris. At the time of their publication, their unique
competitor was the first edition of The Theory of Functions of a Real Variable and the
Theory of Fourier Series [31] published in 1907 by Ernest W. Hobson (1856–1933),
giving, in a much less elegant style and a less original way, the first presentation of
Lebesgue integral in book form and English language. The first treatise in German
on real functions including Lebesgue’s measure and integral, published in 1918, was
the Vorlesungen über reelle Funktionen [2] of Constantin Carathéodory (1873–1950),
who wrote that

äusserst originell sind ausserdem die Darstellungen bei de la Vallée Poussin.

Carathéodory published in 1939 the first volume of another book on real func-
tions [3]. Irony of history, the second volume never came to light, the whole edition
being destroyed in the publishing house Teubner during the bombing of Leipzig by
the Royal Air Force of December 4, 1943!

Volume I of the Cours d’analyse has seen a total of twelve editions, the last one
in 1959, and Volume II nine, the last one in 1957, an exceptionally long life for a
mathematical book. The difference in the number of editions for the two volumes is
explained by the fact that Volume I covered the material for the first year students
at the Université Catholique de Louvain, and Volume II the one for the second year
students, whose population was substantially smaller.

In the Preface of the 6th edition of Volume II, VP announced that he

revised with the greatest care the part of volume devoted to the geometrical ap-
plications. The principles of the theory of envelopes, which could look some-
what wavering, have got all the wanted precision. I have thought that the time
had come to introduce in the theory of space curves the consideration of the
moving frame whose use has much spread. [. . . ] I have developed somewhat
more than before the theory of the curvature of surfaces: I have made more
precise the interpretation of signs, I have exposed O. Bonnet’s theorem estab-
lishing the relation between the total curvature of a surface and the geodetic
curvature of its contour, and finally I have extended the determination of a sur-
face through its six parameters.

The volume gained some fifty pages, and some of the improvements came from VP’s
papers [22] and [23].

In 1935, VP abandoned the course on differential and integral calculus to his for-
mer student Fernand Simonart (1888–1966), a differential geometer, who contributed
to the revisions of the last editions of the Cours. The transition was courteously an-
nounced in the Preface of the 8th edition.

After having had the honor to teach myself the material of this course at the
University of Louvain during forty-five years, I have been particularly happy
to see this work assigned to one of my most distinguished former students, M.
Fernand Simonart, to-day my colleague since already many years [. . . ]. He has
spontaneously offered me his precious help for the revision of material and the
publication of this eighth edition. The book has remained essentially the same,
but M. Simonart has introduced many improvements of details and judicious
additions.
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Those additions essentially deal with the geometrical applications of differential and
integral calculus. Simonart also introduced the language of vector analysis in the
theorems of Green, Stokes and Ostrogradsky.

5 Reception, Influence and Modernity

The preceding lines have, I hope, convinced the reader of the exceptional quality, both
in content and in style, of the Cours d’analyse infinitésimale. The first editions, with
their important changes, received very positive reviews. Jules Tannery (1848–1910)
[42] observed, for the 1st edition of Volume I, that

although the good books on this topic are numerous, nobody will regret the pub-
lication of this new course of analysis; the effort made by the author to found
exclusively the teaching of analysis on perfectly rigorous notions is worthy of
attention, especially because it is really an elementary book that he wanted to
write, and that he has written.

The same reviewer noticed, concerning the same edition of Volume II,

the very simple proof of the existence theorem for ordinary differential equa-
tions of the first order, ingeniously based upon the consideration of a function
satisfying such an equation with an error smaller than any given quantity.

Robert d’Adhémar (1874–1941) [4] wrote, for the 2nd edition of Volume I, that

the first edition of this book was excellent; the present one is a true jewel. [. . . ]
This chapter [on Lebesgue integral] where M. de la Vallée has put originality
and a great force of synthesis, will be remarked by the scientists,

and, for the 2nd edition of Volume II, that

written in this way by a very rigorous and penetrating mind, the book has the
beauty of strong and classical things, and I am sure that more than one professor
of analysis, before giving his lecture, [. . . ] will read the corresponding chapter
of the book of M. de la Vallée Poussin.

The same author noticed that

Volume I, 3rd edition, and Volume II, 2nd edition, will be translated in Ger-
man and we impatiently wait for a Volume III, by which the book would do a
precious service to French students. [. . . ] This sole book where one can find a
didactic presentation of Lebesgue integral [. . . ] can be compared to the one of
M. Camille Jordan. There is nothing more to say.

The analysis was confirmed by Paul Mansion (1844–1919) in JFM 45.1281.03.

Dieses Buch, dessen deutsche Übersetzung sich beim Ausbruch des Krieges
in Vorbereitung befand, ist wohl—besonders wegen der Strenge der Darstel-
lung—das beste unter allen französischen Lehrbüchern.
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Reviewing the same volumes for the AMS [38], M.B. Porter observes that

the handling throughout is clear, elegant, and concise; the various topics are il-
lustrated by numerous carefully chosen examples selected with rare pedagogic
skill to develop a real understanding of the text. [. . . ] It is impossible to point
out all the merits of these volumes, so rich in varied topics, so lucid in exposi-
tion and elegant in presentation. A unique feature of the book is that it does for
Lebesgue’s integral what Jordan did for Riemann’s theory.

For Rolin Wavre [45], analyzing the 4th edition,

for the real domain, the course of M. de la Vallée-Poussin is, in many points,
more detailed than those of MM. Jordan, Picard or Goursat, to which one will
often be tempted to compare it. A deeper analysis would be necessary to show
the personal contribution of the author to the treated matters. This contribution
is undoubtly very important.

For the 5th edition of Volume I, Porter [39] observes that

even in following the conventional order of the French treatises, de la Vallée
Poussin displays his usual elegance and simplicity of presentation so that the
most hackneyed matters acquire a new interest. [. . . ] The treatment of indeter-
minate forms is the best the reviewer knows of. [. . . ] In conclusion, it may be
said that this is one of the most valuable handbooks on modern analysis in any
language and an English translation of it would be a welcome addition to our
literature of the subject.

This wish was not realized, but the 8th edition was reprinted by Dover in 1946.
The influence of VP’s Cours d’analyse infinitésimale has been deep and long last-

ing, as revealed by many testimonies. In the Introduction to the 8th edition of his
Course of pure Mathematics [28], Godefrey Harold Hardy (1877–1947) expressed
his indebtedness.

I have rewritten the parts of Chs. VI and VII which deal with the elementary
properties of differential coefficients. Here I have found de la Vallée-Poussin’s
Cours d’analyse the best guide, and I am sure that this part of the book is much
improved.

When publishing Volume I of his monograph Analysis [30], Einar Hille (1894–1980)
recalled in the Introduction that

fifty years ago, in preparing for a comprehensive examination, I read Ch.J. de la
Vallée Poussin Cours d’analyse infinitésimale, vol. 1 (1909). This treatise left a
lasting impression and, when my book was planned, that of the Belgian master
served as the model although the final product differs from it in many respect.

In his obituary of VP [1], John Charles Burkill (1900–1993) noticed that

the contribution to mathematical literature for which he is most widely known is
his Cours d’Analyse [. . . ]. If Jordan’s is the most noble of the Cours d’Analyse
and perhaps Goursat’s [. . . ] the most widely read, it can hardly be doubted that
VP’s is the most elegant and lucid. After half a century it is still put before the
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more able undergraduates as a model of style, and there are parts of it which no
other writer has presented with anything like the same economy and clarity.

Almost one century after its publication, VP’s Cours d’analyse infinitésimale in
its 4th or later edition, would not require substantial modifications to be used to-
day as a reference text in an advanced calculus course. The XIXth century concept
of limit of a variable should be replaced by that of limit of a sequence, with a se-
quence defined as a mapping from the natural integers to the real numbers. The given
(correct) proofs of the fundamental properties of a continuous function on a closed
interval could be simplified by replacing the rather cumbersome result about the os-
cillation of the function by Borel-Lebesgue lemma. Similarly for functions of several
variables, where the concept of domain bounded by a curve in the plane should be
replaced by the more general one of compact. All proofs about differentiation and
differentiable functions are still up-to-date. The presentation of the implicit function
theorem could be saved by replacing the generalized assumptions mentioned above
by the standard ones. The approach to indefinite integrals needs no modification and
definite (Riemann) integration in dimension one is well described using Darboux’s
method.

VP’s approach of multiple integrals is somewhat discursive and should be made
more rigorous. The presentation of numerical series and series of functions is better
and more complete than in many contemporary textbooks, and the same is true for
improper, curvilinear and Eulerian integrals. The theory of Fourier series, in the ab-
sence of Lebesgue integral, can hardly be improved and the chapters on differential
equations do not differ essentially from the corresponding ones in a modern book
of advanced calculus. Under the influence of Bourbaki’s Éléments de mathématique,
the mathematical style has been formalized in the second half of the XXth century,
and one could be tempted, to translate VP’s Cours d’analyse infinitésimale in the lan-
guage of Jean Dieudonné’s Éléments d’analyse. The price paid for a greatest apparent
rigor would be a substantial loss in style and elegance.

Since the pioneering period where VP was including Lebesgue integration in two
early editions of his Cours d’analyse, many other approaches have been devised to
introduce Lebesgue measure and integral. The question of presenting measure before
integral, or integral before measure has been warmly discussed, and is a matter of
taste. However, VP’s presentation remains, after one century, a very readable and
valuable reference for learning Lebesgue’s theory in R

n.

6 Conclusion

The Cours d’analyse infinitésimale of VP, with his many editions, has been most
influential all around the world in providing to beginners a clear and rigorous in-
troduction to the foundations and applications of differential and integral calculus.
When travelling abroad and telling that I was professor at the Université Catholique
de Louvain, I was surprised to hear comments from so many interlocutors, about
the fundamental role the Cours d’analyse had played in their mathematical training.
They all praised the elegance and clarity of the style, the choice of the topics and their
presentation.
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On the other hand, the 2nd and 3rd editions have been the royal way used by
many mathematicians of the first quarter of the XXth century to get acquainted with
Lebesgue integral and its application to Fourier series. In the French literature, one
had to wait for World War II to see a timid and short introduction to Lebesgue integral
in the ultimate edition of Picard’s Traité d’analyse and in Valiron’s Cours d’analyse.
No one could be compared in elegance and in comprehensiveness to the two volumes
of the Belgian mathematician.

One could hardly find an introduction to analysis containing so many original
contributions of his author. The Cours d’analyse infinitésimale is a beautiful example
of the indispensable fruitful relation between research and teaching. VP’s teaching
influenced his research, and VP’s research influenced his teaching. This is the secret
of great mathematical books.

In his already quoted paper in [24, Vol. 3], Jean-Pierre Kahane insisted that

there is something in common to the productions of youth and of maturity of
de La Vallée Poussin, about Fourier analysis as well as the other domains of his
activity. He is simple, elegant and precise. To read him to-day is both a good
lecture of mathematics and a beautiful lecture on language and on style.

I hope this paper will contribute to motivate mathematicians to pay a first or another
visit to VP’s Cours d’analyse infinitésimale.
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1 A Private Coloring Book

Many Mathematics books, and in particular expository
books and text books, tell us a lot about their authors, and
thus can and should be seen as personal statements. I be-
lieve that it is valuable if they (admit that they) communi-
cate the experiences and the views and the tastes of their
authors, starting of course with the selection of topics, the
selection of the material to be presented, and in telling the
stories not only of the Mathematics, but also of how it was
found/created, shaped, and developed.

This is what Alexander Soifer tries to deliver in his
Mathematical Coloring Book, as he explains in the “mission
statement” for his book, as part of a preface called “Greet-

ings to the Reader” (pp. xxvii–xxviii):

Most books in the field present mathematics as a flower, dried out between
pages of an old dusty volume, so dry that the colors are faded and only theorem–
proof narrative survives. Along with my previous books, Mathematical Color-
ing Book will strive to become an account of a live mathematics. I hope the
book will present mathematics as a human endeavor: the reader should expect
to find in it not only results, but also portraits of their creators; not only mathe-
matical facts, but also open problems; not only new mathematical research, but
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also new historical investigations; not only mathematical aspirations, but also
moral dilemmas of the times between and during the two horrific World Wars of
the twentieth century. In my view, mathematics is done by human beings, and
knowing their lives and cultures enriches our understanding of mathematics as
a product of human activity, rather than an abstraction which exists separately
from us and comes to us exclusively as a catalog of theorems and formulas. In-
deed, new facts and artifacts will be presented that are related to the history of
the Chromatic Number of the Plane problem, the early history of Ramsey The-
ory, the lives of Issai Schur, Pierre Joseph Henry Baudet, and Bartel Leendert
van der Waerden.
I hope you will join me on a journey you will never forget, a journey full of
passion, where mathematics and history are researched in the process of solving
mysteries more exciting than fiction, precisely because those are mysteries of
real affairs of human history. Can mathematics be received by all senses, like a
vibrant flower, indeed, like life itself? One way to find out is to experience this
book.

And in this spirit, Alexander Soifer, born 1948 in Moscow, now Professor of Math-
ematics, Art & Film History at the University of Colorado in Colorado Springs, and
(among other functions) the editor of his own private mathematics journal Geombi-
natorics, has worked on this book for 18 years, from early 1990 until 2008, to now
present us his “Mathematical Coloring Book” on xxx+607 pages.

And indeed Soifer’s book contains a wealth of interesting and very diverse mate-
rial. But after struggling with the book for 2 1

2 years on the way to this review I have to
say that this book has many faults, starting with the title, the dedication and the many
prefaces, but more seriously with the selection of the material, the editorial choices
of what to present and what not to present, which lead to fundamental problems in
the “historical” sections, but also with its style, or rather: styles.

1.1 What is This Book About?

“Mathematics of Coloring” is not an established or coherent mathematical discipline
or topic. Correspondingly, in this book three different themes are subsumed under this
heading: The “chromatic number of the plane” (and its variants), treated in Parts II, III
and V of The Mathematical Coloring Book, the four color problem, treated in Part IV,
and a number of problems (coloring the integers, coloring the edges of a graph, etc.)
that may be seen as instances of Ramsey Theory, treated in parts I, VI, VII, and VIII.
One further part IX connects “coloring the plane” with a Ramsey topic, while the
final Part X is called “Predicting the Future”. And to a large part this book is a history
book, only loosely connected to the Mathematics of Coloring.

1.1.1 The Four Color Theorem

The four color problem, which in modern language asks whether every finite planar
graph has a vertex coloring with at most four colors, was first posed in 1852 by
Francis Guthrie (1831–1899). This is of course a well-known problem, and treated in
great detail elsewhere (see e.g. Biggs et al. [3] and Wilson [15]), including its history.
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Soifer uncovered and proudly reproduces the letter from De Morgan to Hamilton
that seems to be the first written record of Guthrie’s problem. At the same time,
my impression is that, despite saying that “Heesch’s role is hard to overestimate”
(p. 188), Soifer doesn’t pay enough attention to Heinrich Heesch (1906–1995), who
laid all the major theoretical foundations for the proof of the four color problem. (See
Bigalke’s biography [2].) Thus history, unfair as it can be, now presents the four color
problem as a “Theorem of Appel and Haken,” as Appel, Haken and Koch completed
the first (massively computer-based) proof in 1976; the proof was reworked later by
Robertson et al. [10] and then with a computer-checkable “formal” computer proof
by Gonthier in 2005, see [6]. In retrospect one can ask: Was this a good problem?
Certainly it was important, as it has driven the development of graph theory to a large
extent. Nevertheless, it has made little connections to other parts of Mathematics.
In 1972, when Heinrich Heesch applied to the German Science Foundation DFG
to fund the computer time that he needed to carry out the computations that would
complete his proof, the DFG’s referee (reportedly Gerhard Ringel) said that the Four
Color Theorem “wouldn’t open any further perspectives. From a successful proof one
could not expect consequences for more comprehensive mathematical theories.” (my
translation from [2, p. 222]). So Heesch couldn’t complete his proof, and the fame
for solving the problem instead went to Hermann Haken and his team.

1.1.2 The Chromatic Number of the Plane

The “chromatic number of the plane problem” asks how many colors you need to
color the points of the plane in such a way that no two points of distance exactly 1 get
the same color. This is clearly equivalent to the question about the minimal number
χ(R2) of subsets Ai that cover the plane R

2 if the subsets are required avoid the
distance 1.

This problem is known as the Hadwiger–Nelson problem, but it has in various
sources been attributed to Hugo Hadwiger, Edward Nelson, Paul Erdős, Martin Gard-
ner, Frank Harary, John R. Isbell, Leo Moser, and William T. Tutte. As Soifer con-
vincingly argues in Chapter 3 of his book, “Chromatic Number of the Plane: An
Historical Essay”, the problem was first posed by Edward Nelson (*1932) in 1950,
who was then a student at the University of Chicago, later postdoc and since 1959
professor in Princeton. A paper by the Swiss geometer Hugo Hadwiger from 1961
presents the problem and establishes the fairly obvious bounds

4 ≤ χ
(
R

2) ≤ 7,

which is still all we know on the original version of the problem.
So it’s originally Nelson’s problem—but in particular Erdős has been instrumental

in making this problem popular. Soifer’s “who’s done it” account of the origins of the
problem is fascinating, although I find his lengthy criticism of people who give other
attributions a bit tiring, and unnecessary. But clearly here he has an ax to grind, and
it is not the only one in this book. If this is a natural problem (it is), it might certainly
have been discovered several times. You can argue about how much credit should go
to the discoverer(s) of such a problem (Soifer speaks of “authorship”), and how much
praise should go to those who popularize such a problem, which in this case included
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Erdős, Hadwiger, Gardner, and of course also Soifer himself, who proudly displays
his part in this.

So it’s a natural problem, but is it a good problem? Since Hadwiger’s 1961 paper,
there has been no progress on the original problem. Of course a popular method
(not only in discrete or “recreational” mathematics) in such a situation is to look
at variations. Thus one looks at related quantities such as the chromatic numbers
χ(Rd) and χ(Qd), and proves bounds for that, or at coverings by sets where no
two points have distance approximately 1. One also observes that the answer may
depend on whether the sets of colors Ai are required to be measurable (and in which
sense), whether they are locally bounded by polygons, etc. One also speculates that
the answer may depend on the axioms of set theory one is willing to use, which again
is not proven, but can be seen on variations of the problem. The pertinent work by
Saharon Shelah with Soifer is presented in detail in Chapter 46 of the book, which
opens the last part of the book under review, Part X, “Predicting the Future”. Here is
the most concrete piece of evidence that is achieved:

Theorem The minimal number of sets needed to cover the plane, if the sets are not
allowed to contain two points of distance 1 with a rational difference vector, is 2
if “ZFC” is assumed (Zermelo–Fraenkel plus axiom of choice), while it is at least 3
and at most 7 if “ZFS” is assumed (Zermelo–Fraenkel plus countable axiom of choice
and every set of real numbers is Lebesgue measurable, what Soifer calls the Zermelo–
Fraenkel–Solovay set of axioms).

Soifer downgrades this result (which is based on the work by Shelah and
Soifer [11]) to an example, Example 46.27 (p. 550), and then presents the proof
in full detail, taken from a 2007 preprint by Michael S. Payne, then an Australian
undergraduate student, whose paper at the time of Soifer’s writing had not been pub-
lished and not even accepted for publication, and who in fact had problems getting
this published. For the now published version, see [8].

Other results, for which one might really want to see the proofs, are presented
without even a proof sketch. For example, Soifer presents

χ
(
Q

2) = χ
(
Q

3) = 2, χ
(
Q

4) = 4

as Results 11.3 and 11.4 in his book, but for the proof he refers to a “legendary unpub-
lished manuscript” by Miro Benda and Micha Perles, whose first version was typed
in Brazil in 1976, but then uses the occasion to advertise his own journal Geombina-
torics, where he eventually published the manuscript in 2000 [1]. Micha Perles has
done so beautiful and interesting mathematics, and written/published so little. Thus
I feel compelled to here give the spoilers:

Proof for χ(Q2) = χ(Q3) = 2. Points in Q
2 can be written in the reduced form

1
e
(a, b), where a, b, e are integers without a common factor, and e > 0. It is suffi-

cient to color the points in the additive subgroup H2 ⊂ Q
2 of points in Q

2 that can
be connected to the origin by rational vectors of length 1, i.e., that have rational dif-
ference vectors of the form 1

e
(a, b) with a2 + b2 = e2, since the plane is partitioned

into translates of this set, and points in different translates are never connected by a
rational vector of length 1.
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Considering this modulo 4, we see that in each such vector 1
e
(a, b) ∈ H2 the de-

nominator e is odd, as is exactly one of a and b. Adding two such difference vectors,
1
e
(a, b)+ 1

e′ (a′, b′) = 1
ee′ (ae′ +a′e, be′ +b′e), we see that as e, e′ are odd, the numer-

ators modulo 2 are just added. This means that we can 2-color the set H0 by assigning
to 1

e
(a, b) the value a + b (mod 2).

The same type of 2-coloring can also be constructed for Q3. �

Proof for χ(Q4) = 4. Here the same type of 2-coloring does not work, as for a re-
duced vector 1

e
(a, b, c, d) of length 1 with a2 + b2 + c2 + d2 = e2, the value of e

could be even while all the numerators a, b, c, d are odd. And indeed in this case at
least four colors/sets are required, as the rational points (0,0,0,0), (1,0,0,0), and
( 1

2 ,± 1
2 , 1

2 , 1
2 ) have pairwise distance 1, so they need to get distinct colors.

Now again as before we need only color the points in the additive subgroup
H4 ⊂ Q

4 of points that can be reached from (0,0,0,0) by rational difference vec-
tors of length 1. These we can represent in a unique reduced way as 1

e
(a, b, c, d),

where now either e is odd and exactly one of a, b, c, d is odd, or e is even and all of
a, b, c, d are odd. In this latter case we set a = 2a1 + 1, b = 2b1 + 1, etc., and from

4
(
a2

1 + a1 + b2
1 + b1 + c2

1 + c1 + d2
1 + d1 + 1

) = e2,

which (as a2
1 + a1 = a1(a1 + 1) is even, etc.) yields that e is even, but not divisible

by 4.
One now verifies that on the subset D ⊂ H0 formed by the first type of points one

can use the same 2-coloring as above, by the value a + b + c + d (mod 2). This D

forms an additive subgroup of H4 ⊂ Q
4 of index 2, and hence once more the same

type of 2-coloring (with two new colors to be used) can be used on H4\D. �

The chromatic number of the plane: Is this a good problem? Again this is a ques-
tion of taste. In my view the fact that there is so little progress on the original problem
in so many years, and progress only on variations, and that the answer might depend
on set theory all indicate that it is not a productive, helpful problem. Also it did not
much connect to theory from other areas of mathematics, except for set theory, al-
though this may change: For example, just recently substantial tools from Fourier
analysis are brought into play to estimate a quite relevant quantity, namely the maxi-
mal density m1(R

2) of a (measurable!) subset A ⊂ R
2 that avoids distance 1, see de

Oliveira & Vallentin [5]. (Erdős has conjectured a long time ago that m1(R
2) < 1

4 ,
which would imply a result by Falconer that one needs at least five measurable unit-
distance avoiding sets to cover the plane.)

1.1.3 Ramsey Theory

Ramsey Theory, named after Frank Plumpton Ramsey (1903–1930) for his 1930 pa-
per [9], treats and quantifies the existence of “regular substructures” in large “arbi-
trary” structures. In particular, Ramsey proved that for any fixed n there is a (large)
number N(n) such that for any 2-coloring of the edges of a complete graph KN on
N ≥ N(n) vertices there is a monochromatic Kn-subgraph, that is, there are n vertices
such that all edges that connect them have the same color. For example, it is a simple
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exercise to see N(n) = 6 will do for n = 3. But clearly the structural/philosophical
insight of the so-called “Ramsey phenomenon” that “complete disorder is impossi-
ble,” that is, that regular substructures cannot be avoided in very large structures, goes
far beyond the (simple, from today’s perspective) result that Ramsey proved.

In Part VII of his book, Soifer provides a wonderful discussion of three major
results in “Ramsey Theory before Ramsey”:

David Hilbert (1892): For every n, r > 0 there is some H(n, r) such that for N ≥
H(n, r) any r-coloring of the integers in {1,2, . . . ,N} one color class contains
an affine n-cube, that is, all integers of the form a + ∑

i∈I xi for fixed positive
integers a, x1, x2, . . . , xn > 0 and all subsets I ⊆ {1,2, . . . , n}.
Issai Schur (1916): For every n > 0 there is some S(r) such that for N ≥ S(r)

any r-coloring of the integers in {1,2, . . . ,N} one color class contains a, b, c such
that a = b + c.
Bartel L. van der Waerden (1927): For every n, r > 0 there is some W(n, r)

such that for N ≥ W(n, r) any r-coloring of the integers in {1,2, . . . ,N} one
color class contains an arithmetic progression of length n.

Soifer reports that Bartel Leendert van der Waerden (1903–1996), an Algebraic Ge-
ometer who got famous for his textbook Moderne Algebra based on courses by Emmy
Noether in Göttingen and by Emil Artin in Hamburg (p. 309),

proved this pioneering result while at Hamburg University and presented it the
following year at the meeting of D.M.V., Deutsche Mathematiker Vereinigung
(German Mathematical Society) in Berlin. The result became popular in Göttin-
gen, as the 1928 Russian visitor of Göttingen A. Y. Khinchin noticed and later
reported [Khi1], but its publication [Wae2] in an obscure Dutch journal hardly
helped its popularity. Only Issai Schur and his two students Alfred Brauer and
Richard Rado learned about and improved upon Van der Waerden’s result al-
most immediately[. . . ].

This report gets a number of facts wrong. For example, the DMV meeting 1928 was
held in Hamburg, and Aleksandr Khinchin writes that the result was obtained in Göt-
tingen.

The “obscure Dutch journal” was Nieuw Archif voor Wiskunde. However, my main
objection to Soifer’s rendition is the negative and down-putting attitude and under-
tone: If it was popular in Göttingen, “Tagesgespräch” (talk of the town) as Khinchin
writes [4], why did “only” Issai Schur and his two students learn about it, and im-
proved it “almost immediately”? Van der Waerden’s paper is called “Beweis einer
Baudetschen Vermutung”—but Soifer then puts a lot of effort into proving Van der
Waerden wrong and instead confirming his conviction that the conjecture was due
to Schur. And he gets this confirmed indirectly (via Erdős), much later, from former
students of Schur.

Again, if the conjecture was natural and may have been “whose time has come,”
why can’t several people come up with it? It is quite plausible that several people
came up with it independently in the 1920s, in this case Schur and Baudet. Why
this urge to prove Van der Waerden wrong about the origin of the conjecture, if he
apparently heard it from Baudet? And does it really make sense to talk about the
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“authorship of the conjecture”? The only plausible reason I can see for Soifer’s pas-
sion and persistence in his investigations and his attempts to find fault with Van der
Waerden is that he badly dislikes him.

Indeed, at this point Soifer doesn’t continue on the topic of Ramsey theory, a sub-
ject that has grown and developed tremendously after Ramsey. See the “classic” ac-
count by Graham, Rothschild and Spencer [7] from 1990, but see also what Sze-
merédi, Gowers, Green–Tao and others have achieved afterwards, which is clearly
“major mathematics”, but which is also outside the range of Soifer’s field of “color-
ing theory.”

1.2 Alexander Soifer vs. Bartel L. van der Waerden

Soifer instead sticks to Van der Waerden. He accuses him of “stealing” his famous
algebra book from Emil Artin based on rather indirect evidence, he tries to prove that
he wrongly claimed to have had a Rockefeller stipend for his time in Hamburg, he
badly tries to find fault in his stay at Leipzig University during Nazi times, and so on.

At this point, I must say that I am not a historian, I have not read all materials and
I have not been to the archives, so I can’t really judge this. I have no stakes in Van
der Waerden, I have never met him, and I cannot (and dare not) judge him, neither
his contributions to Mathematics, nor what he did or didn’t do for example as a pro-
fessor in Leipzig 1931–1945. However, I object to the method. In some parts of The
Mathematical Coloring Book Soifer tells his personal story, writes about Mathemat-
ics he has been involved in, and the people who did it and do it, people he knows and
he has met. I feel he has every right to be emotional and personal in his judgement
there, although of course he will write most favorable about his colleagues, friends
and acquaintances. In this context, I feel he has the right to choose from which letters
and emails he wants to quote (and he quotes from a lot of emails and letters). After
all, in these parts it is his story.

When he delves into historical subjects, such as the life and times of Bartel L. van
der Waerden, things change. As far as I know now, Van der Waerden was Professor
of Mathematics at Leipzig University 1931–1945, and for part of that time he was
the Director of the Mathematical Institute there. So Van der Waerden stayed in Nazi-
Germany to the end, although he had options and offers to leave. He has courageous
acts and statements on record, but also cooperated with Nazi authorities (and I cer-
tainly can’t tell whether this was “more than necessary”, whatever that could mean),
and some of his actions seem to have harmed Jewish colleagues (but I don’t know
and can’t judge whether any of this was intentional or even done knowingly). Cer-
tainly Van der Waerden cannot be excepted from discussion and criticism. However,
it seems clear to me that it cannot be good if a historian has an ax to grind, if from
the outset he wants to prove things about his subject of study, since this will color his
judgement: He should at least try to be objective.

In Van der Waerden’s case, I seem to get a much more objective and trustwor-
thy picture of his time in Leipzig from reading Reinhard Siegmund-Schultze’s ac-
count and study [12]. Indeed, Siegmund-Schultze has been in the archives himself.
Siegmund-Schultze also tells me that Soifer reads neither German nor Dutch, so he
can’t access the original sources, not a good basis for this. So the impression remains
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of a personal war. Soifer dedicates four chapters (Chapters 36–39) of the Coloring
Book for his research into the Life of Van der Waerden, spanning pages 367–483,
more than one hundred pages. He calls them “a report on research in progress”
(p. 483). Three of these chapters have previously appeared in Soifer’s private journal
Geombinatorics in 2004/2005. He is apparently continuing his research, and the next
version of his treatment of Van der Waerden is apparently scheduled to appear with
Birkhäuser in October 2014 [13].

Why this passion and scornfulness against Van der Waerden? Section 36.1 is en-
titled “Prologue: Why I Had to Undertake the Search for Van der Waerden” and it
claims that the reason is that Van der Waerden was not treated biographically enough
since he changed subjects, moved between countries, and lived to get old. And that
all the accounts of Van der Waerden up to now were biased (p. 368):

These authors apparently believed that a personal acquaintance with Professor
Van der Waerden automatically made them experts on his life. Their repeat-
ing Van der Waerden’s words and explanations did contribute to mathematical
folklore. However, these repetitions, mixed with “cheerleading” and lacking in
archival research and critical examination of facts, hardly added up to history.53

With his reference to “cheerleading”, Soifer may refer to Rüdiger Thiele’s account
of “Van der Waerden in Leipzig” [14], which is based on Thiele’s lecture at a festive
colloquium in Leipzig, celebrating Van der Waerden’s 100th birthday in the presence
of colleagues who knew and had worked with Van der Waerden. On such an occa-
sion, of course one cannot expect a critical and balanced account, nor pure historical
scholarship and objectiveness. So we get caught in the trenches of a fight between
Thiele (who stays away from criticism) and Soifer (who has an ax to grind). A quote
from Thiele’s lecture gets Soifer into a highly emotional and aggressive outbreak
(page 368/369, if you want to look it up), which—in my opinion—proves that all that
follows is not a result of historical scholarship, but rather a documentation of Soifer’s
persistent personal campaign against Van der Waerden. And as it is a campaign, the
reading is not agreeable, and the results and interpretations can’t be trusted. That’s
not the exciting personal tour to fascinating “coloring mathematics” as it was done
that I was promised in the introduction of the book!

1.3 On Style

What Alexander Soifer calls “The Coloring Book” could and should much more aptly
been called “A Coloring Book” or perhaps even better “My Coloring Book”—but
perhaps this title was not available due to copyright reasons, as it is the title of a
famous song by Kander & Ebb. However, Soifer does not descend to pop culture, but
he lets the famous poem “Pour faire le portrait d’un oiseau” by Jacques Prévert set
the tone at the opening of the volume—which he presents in a translation of his own
(with Maurice Stark), but leaves out the dedication that belongs to the poem, “A Elsa
Henriques”. This comes after a dedication to his Father

This coloring book is for my late father Yuri Soifer, a great painter, who intro-
duced colors into my life.
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Of course dedications are a private matter, and probably should not be commented
upon, except in this case we are told twice more that Soifer’s father was a great painter
(pp. v, xxvii). The reader might get annoyed when reading the three laudatory Fore-
words (by Branko Grünbaum, Peter D. Johnson Jr., and Cecil Rousseau), and the two
prefaces by the author (called “Acknowledgements” and “Greetings to the Reader”),
being told again and again how great this book is. Even before the book has really
started, it has been compared to Hardy’s Apology and to Courant–Robbins’ What
is Mathematics?, Soifer has quoted Pasternak, Picasso, Kundera, and Hemingway on
his behalf, and so on. Someone should have advised the author and made him proceed
with a bit more modesty. Someone should have also forced him to cut the manuscript,
at the long parts and chapters where the investigations into the colorful lives of the
creators get out of hand. The “level of detail” is uneven and not sufficiently explained
or justified, neither in the “historical” sections nor in the mathematical ones, where
some chances to present something nice are missed (see above), but in other instances
complete proofs are given with pages of messy combinatorial details and not much
insight to be gained. All in all this results in a book that has interesting parts and a lot
of valuable material, but as a whole fails to deliver what it promised at the outset.
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The concept of a Poisson structure is an old one: Given a
commutative algebra A, for example the algebra of smooth
functions on a smooth manifold, a Poisson bracket is a Lie
bracket { · , · } on A that turns A into a Lie algebra in such a
way that, given a ∈ A, the operation {a, · } is a derivation of
A relative to the multiplicative structure of A. A symplectic
structure (closed non-degenerate 2-form) on a smooth man-
ifold determines a Poisson structure on the ring of smooth
functions but there are Poisson structures on smooth mani-
folds that do not arise from a symplectic structure.

Searching for first integrals (or constants of motion),
Poisson was led to his discovery. The bracket discovered

by Poisson arises from a symplectic structure. We recall that a first integral for a dif-
ferential equation is a function that is constant along the solutions of the differential
equation. A first integral yields a reduction of the number of degrees of freedom of
the underlying differential equation.

Poisson structures have been explored by J. Liouville, S. Lie, É. Cartan, P. Dirac,
and others. Looking for integrals of motion, Liouville isolated what we nowadays re-
fer to as Liouville integrable systems and established a result which thereafter became
fundamental for the development of analytical mechanics and prompted an entire re-
search area, that of integrable systems, very active still today. A Liouville integrable
system is one with the maximal possible number of pairwise Poisson commuting in-
dependent first integrals. The quoted result of Liouville essentially says that, under
suitable additional assumptions (for example of the kind that the energy level sets be
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compact), canonical coordinates, known as action-angle variables, can be introduced,
and that the underlying differential system can then be solved in an elementary man-
ner by “quadratures”.

For illustration, consider the Kepler problem (two-body problem). Reduction to
the center of mass system reduces the original 6-dimensional configuration space to
a copy of R3 with a point removed which for convenience we take to be the origin.
The associated phase space is 6-dimensional, and conservation of angular momen-
tum reduces the phase space to a 4-dimensional space having a punctured plane as
its underlying configuration space. In standard Cartesian coordinates (q1, q2,p1,p2),
the Poisson bracket { · , · } is then given by {qj ,pk} = δj,k (1 ≤ j , k ≤ 2), the other
Poisson brackets between coordinate functions being zero. In terms of polar coor-
dinates (r, ϕ) in the punctured configuration plane, let M = r2ϕ̇ denote the angular
momentum, let U be the central potential (a function of r), let V denote the effective

potential defined by V (r) = U(r)+ M2

2r2 , and let H = ṙ2

2 +V be the Hamiltonian (total
energy). In the Hamiltonian formalism, the generalized momenta are given by pr = ṙ

and pϕ = r2ϕ̇ but, to make the discussion more easily accessible to the non-expert,
we stick to the more standard Lagrangian notation. The functions M and H are con-
stants of motion; they Poisson commute, that is, {H,M} = 0 and, indeed, constitute
a maximal system of independent integrals whence the Kepler problem is integrable.
Indeed, since H is independent of time, the function ṙ2 = 2(H − V ) integrates the
equation of motion r̈ = − ∂V

r
, and an integration or “quadrature” solves the differen-

tial equation ṙ = √
2(H − V ) for r . Likewise, an integration solves the differential

equation ϕ̇ = M

r2 for ϕ, and the resulting function

ϕ(r) =
∫ r

r0

M/s2ds√
2(H − V (s))

describes the orbit in the (r, ϕ)-plane. When M is zero, this yields a line. When M is
non-zero and U = − k

r
for some positive constant k (Newtonian potential) the orbits

in the (r, ϕ)-plane are the Kepler ellipses. A variable change yields ordinary action-
angle variables.

Poisson structures constitute a basic tool for Lie’s work. Indeed, given a real finite-
dimensional Lie algebra g, the Lie bracket induces a Poisson bracket on the algebra of
smooth functions on the linear dual of g. This is how Lie actually implemented the Lie
bracket. Poisson structures thereby provided, for example, an appropriate language
for the proof of Lie’s third theorem. This theorem says that any finite-dimensional
Lie algebra is the Lie algebra of a Lie group. While this result is nowadays lin-
gua franca, its upshot is the fundamental insight that a “transformation group” with
finite-dimensional Lie algebra integrates to a group that is independent of the underly-
ing manifold on which the transformation group is defined. (For infinite-dimensional
“transformation groups”, referred to nowadays as “Lie pseudo groups”, no such result
is available, and developing an abstract object that adequately represents an infinite-
dimensional Lie pseudo group is one of the major issues in the modern theory of
symmetries of differential equations.)

For many discoveries of modern symplectic geometry there are precedents in Lie’s
work which could not have been spelled out without the concept of a Poisson struc-
ture. Dirac made the fundamental observation that Poisson brackets provide the right
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framework in which classical mechanics is seen as an approximation of quantum me-
chanics. Indeed, there is a story saying that Dirac’s Cambridge supervisor Fowler had
requested a copy of [4] from Heisenberg once it were available and that in August
1925 Heisenberg had sent a copy of the proofs to Fowler, who then turned it over to
Dirac who, in turn, after a couple of weeks, made his fundamental discovery that the
quantum mechanical commutator satisfies the same axioms as the Poisson bracket.
Dirac also noticed the importance of Poisson brackets for classical constrained sys-
tems and developed the miraculous notion of Dirac bracket.

Since the pioneering work of Res Jost, see, e.g., [7], and A. Lichnerowicz [9],
Poisson brackets have been in intense development as a research topic on its own.
In a series of celebrated papers of Flato et al. [1, 2], what has come to be known as
deformation quantization was developed: Given a Poisson algebra, construct a (non-
commutative) formal deformation such that, suitably interpreted, the commutator in
the deformed algebra recovers, up to higher order, the Poisson bracket. For intelli-
gibility we recall that, given a commutative algebra A over a commutative ring R,
a formal deformation of A is a non-commutative R�t �-bilinear algebra structure
f :A�t � × A�t � → A�t � on A�t � which is expressible in the form

f (a, b) = ab + tf1(a, b) + t2f2(a, b) + · · ·
where “ab” denotes the product in A, extended to A�t � in the standard manner, and
where each fj (j ≥ 1) is an R-bilinear map A × A → A extended in the natural
manner to an R�t �-bilinear map A�t � × A�t � → A�t �; here A�t � denotes the ring
of formal power series in the variable t with coefficients in A. Given the algebra
A, the standard tool to explore the obstructions to a recursive construction of such
a deformation of A is the Hochschild complex defining Hochschild cohomology.
Given a Poisson algebra A, a formal deformation quantization of A recovers the
Poisson bracket through the constituent f1. In the deformation quantization approach
the requisite Hilbert space, fundamental for the interpretation of quantum mechanics,
is missing, however. The formal deformation quantization program culminated in
a spectacular result due to Kontsevich: Any Poisson algebra structure on a smooth
manifold arises from a formal deformation. This result is a consequence of a more
general one.

To explain briefly this more general result, let A be the algebra of smooth func-
tions on a smooth manifold and consider the standard complex Hoch(A) defining
the Hochschild cohomology of A in the Fréchet sense, endowed with the Gersten-
haber bracket; the Hochschild differential and Gerstenhaber bracket combine to a
differential graded Lie algebra structure. On the other hand, the Schouten bracket
(the extension of the ordinary Lie bracket of vector fields to a bracket on multi-vector
fields) turns the graded vector space of multi-vector fields into a graded Lie algebra,
which we view as a differential graded Lie algebra with zero differential. Kontse-
vich’s result [8] says that an obvious map between the two differential graded Lie
algebras, while plainly not a morphism of differential graded Lie algebras, extends
to a morphism of what is nowadays referred to as one of L∞ algebras (or s(trongly)
h(omotopy) Lie algebras) and thereby establishes an equivalence between the two
objects, viewed as L∞ algebras. In technical terms, one refers to the situation by the
phrase “the Hochschild complex, endowed with the Gerstenhaber bracket, is formal
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as a differential graded Lie algebra”, and the degrees of the underlying graded objects
would better be shifted by 1. In practise this means that, for the problem under dis-
cussion, the weaker property enjoyed by the morphism between the two differential
graded Lie algebras is just as good as if the morphism were a true one of differential
graded Lie algebras.

The book under review somewhat reflects various items of these developments
and, in particular, is devoted to integrable systems and Kontsevich’s formality result.

The book consists of three parts, part I (Theoretical Background), part II (Exam-
ples), part III (Applications). Part I begins with an exposition of Poisson algebras,
Poisson varieties, and Poisson manifolds and offers a rather detailed discussion of a
number of basic constructions in the Poisson world including the tensor product of
Poisson algebras and the product of Poisson manifolds, Poisson ideals and Poisson
subvarieties, holomorphic Poisson structures, field extensions, localization, etc. Next
the authors treat multi-derivations, multi-vector fields, formal differentials, Schouten
bracket, Lie derivative. Thereafter they introduce Poisson calculus, Poisson coho-
mology, and the modular class. The first part ends with an introduction to the prob-
lem of reduction in the Poisson world. In part II, the authors treat constant Poisson
structures, regular and symplectic manifolds, linear Poisson structures, higher degree
Poisson structures including Nambu structures, Poisson structures in dimensions two
and three, r-brackets, Poisson Lie groups, that is, the classical analogues of quantum
groups, and Lie bialgebras. In part III (Applications), the authors expose Liouville
integrable systems including the action-angle theorem and offer an introduction into
deformation quantization aimed at explaining Kontsevich’s formality theorem.

Each chapter contains a series of exercises as well as a number of notes aimed
at giving further hints as to how the various items in the book are interrelated and,
furthermore, at placing the material in the literature. The book includes an appendix
on multilinear algebra and one on real and complex differential geometry.

The book is a timely and courageous attempt to make accessible a flourishing re-
search area to a wider audience in the form of a research monograph/textbook and
as such it is very welcome. However, the authors do not reflect the collective under-
standing of various items treated in the book.

For example, on p. 68, the authors write “we introduce the objects which are,
in a sense, dual to skew-symmetric multi-derivations of a (commutative associative)
algebra A”. However, the salient feature here is that the formal differentials represent
the derivations functor and the issue whether the pairing between the differentials
and derivations is a duality is in general somewhat delicate. On p. 92, Lie algebra
and Poisson cohomology are said to be formally very similar. Earlier in the book, the
authors develop what they refer to as ‘algebraic de Rham cohomology’ and recall as
well ordinary de Rham cohomology for manifolds. All these theories are offspring
of a single theory, that of derived functors; however the book does not quote any
classical standard homological algebra source such as, e.g., [3]. The observation that
these above theories are offspring of a single theory, except for Poisson cohomology,
goes back at least to [12] (not quoted in the book) and, for Poisson cohomology,
has been worked out in [5] in the framework of Lie-Rinehart algebras. In the book
under review, Poisson cohomology is defined in terms of a complex, without further
explanation.
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The discussion of L∞-structures and L∞-morphisms in Chap. 13 of the book
is technically correct but lacks conceptual insight. The higher homotopies lurking
behind are nowadays well understood, and the appropriate combinatorial object to
handle them is the differential graded symmetric coalgebra concept. Indeed, an L∞-
structure on a graded vector space g is simply a differential graded coalgebra structure
on the symmetric coalgebra Sc[sg] on the suspension sg of g (the graded vector space
g, regraded up by 1). An L∞-morphism is then simply a map preserving the structure.
No reference is given to the existing literature on higher homotopies, see, e.g., [6]
for a survey, the term “higher homotopy” does not occur, and the reader will never
learn that, without Stasheff’s contributions to the idea of higher homotopies [13],
Kontsevich would not even have been able to phrase the formality conjecture.

In a similar vein, on p. 399, the reader finds the phrase “a differential graded Lie
algebra which admits an L∞ quasi-isomorphism to its cohomology is called formal,
a terminology which is borrowed from topology”. Now, in rational homotopy theory,
more precisely in the framework of the Quillen model, this is what formality means;
it is not just “borrowed” terminology. The terminology “formal” has been chosen
to indicate that, for a formal space, the (rational) topological invariants arise as a
formal consequence of merely the rational cohomology ring. A general space gives
rise to higher homotopies that induce non-trivial higher order operations, e.g. Massey
products. In the book under review, no reference is given although rational homotopy
theory is nowadays well developed and standard textbooks are available. What has
come to be known as the Quillen model goes back to [11]. The Quillen model in-
volves, in a crucial manner, a celebrated theorem on the structure of Hopf algebras
in characteristic zero [10]. Furthermore, in [11], Quillen discusses Lie algebra twist-
ing cochains in detail. The defining property of a Lie algebra twisting cochain is the
Maurer-Cartan equation or, equivalently, deformation equation, or master equation.
The higher homotopies in Kontsevich’s formality theorem can concisely be phrased
in terms of a Lie algebra twisting cochain. Elsewhere in the book, the authors describe
formal deformations of commutative algebras via the Maurer-Cartan equation.
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