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Abstract We review results on the existence and uniqueness for a surface growth
model with or without space–time white noise. If the surface is a graph, then this
model has striking similarities to the three dimensional Navier-Stokes equations in
terms of energy estimates and scaling properties, and in both models the question of
uniqueness of global weak solutions remains open.

In the physically relevant dimension d = 2 and with the physically relevant space–
time white noise driving the equation, the direct fixed-point argument for mild solu-
tions fails, as there is not sufficient regularity for the stochastic forcing. The situation
is the simplest case where the method of regularity structures introduced by Martin
Hairer can be applied, although we follow here a significantly simpler approach to
highlight the key problems. Using spectral Galerkin method or any other type of reg-
ularization of the noise, one can give a rigorous meaning to the stochastic PDE and
show existence and uniqueness of local solutions in that setting. Moreover, several
types of regularization seem to yield all the same solution.

We finally comment briefly on possible blow up phenomena and show with a sim-
ple argument that many complex-valued solutions actually do blow up in finite time.
This shows that energy estimates alone are not enough to verify global uniqueness of
solutions. Results in this direction are known already for the 3D-Navier Stokes by Li
and Sinai, treating complex valued solutions, and more recently by Tao by construct-
ing an equation of Navier-Stokes type with blow up.
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1 Introduction

The analysis of mathematical models for the study of surface growth phenomena has
attracted attention in recent years from both the physical and the mathematical com-
munities. In this paper we focus on one special 4-th order equations with quadratic
nonlinearity that does not allow for maximum principle or gradient flow structures
and has striking similarities to the Navier-Stokes equation in dimension 3 and the
Kadar-Parisi-Zhang (KPZ) equation.

The equation is of the type

∂th = −�2h − �|∇h|2 + ξ

where h(t, ·) is the graph of the surface at time t > 0 over a d-dimensional domain
(with d = 1,2), and ξ is space-time white noise. Here � denotes the Laplacian and
∇ the gradient of h.

In Sect. 2 we give a brief introduction to stochastic partial differential equations
(SPDEs) and space-time white noise. For the whole paper we focus on the relatively
simple setting of additive noise only, which is present in most of the applications.

1.1 Physical Model

Let us first discuss physical properties of the model. For mathematical details on
the model see the exposition in Sect. 1.3. For additional references see [23, 44, 77,
78, 84–86, 100] or Da Prato & Zabczyk [32, Sect. 13.14]. For general surveys on
surface growth processes and molecular beam epitaxy see the classical references by
Barabási & Stanley [3] or Halpin-Healy & Zhang [54].

Equation (1), which is sometimes referred to as a mass-conservative version of
the KPZ model, arises in several models for surface growth. The two-dimensional
version was for example suggested in [84–86] as a phenomenological model for the
growth of an amorphous surface (Zr65Al7,5Cu27,5). But similar equations appear also
in the formation of sand or snow ripples. Later the equation has also become a model
for ion-sputtering, where a surface is eroded by a ion-beam, see Cuerno & Barabási
[27], Castro et al. [23] or [77, 78]. The one-dimensional equation appeared also as a
model for the boundaries of terraces in the epitaxy of Silicon [44]. Further details on
the model can be found in [65, 100, 105, 112].

Derivation of the Model In the literature there are two possible methods suggested
for the derivation of our model. The first one is a symmetry argument. One assumes
that on R

d the equation only contains terms that are invariant under all symmetry
operations, which do not change the growth process. These are for example rotations
of the underlying domain, reflections xi �→ −xi , or translations in both x and h.
Furthermore, the equation should conserve mass, as the model is supposed to be in
a moving frame following the average growth rate of the surface. So the right-hand
side needs to be a divergence.
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There are only two linear and two quadratic terms that satisfy all these require-
ments. Higher order terms are usually neglected in the physics literature, for example
by considering a small gradient expansion of the nonlinearity. Two terms are already
present in our equation, which are −�2h and −�|∇h|2. The missing linear term
−�h is of lower order and usually associated with the formation of hills. The other
quadratic term is the determinant of the Hessian of h, which has a completely differ-
ent nature than the term studied here. We comment on both terms in more detail in
Sect. 1.3.

Another approach that leads to models of these type is more geometric in nature.
First consider motion on the surface by surface diffusion, which leads in a lineariza-
tion to the −�2. The nonlinear term then arises by the more complicated geometric
argument that particles are attracted to the surface and not fall down vertically. This
leads to an effective uphill current of mass, depending on the slope of the surface,
which in first order gives −�h and in second order the non-linearity considered here.

Surface Roughness The typical physical quantity of interest is the roughness of the
surface. This is measured as the averaged quadratic deviation from the spatial mean
of the surface. As one considers a moving frame, this is usually just the expectation
of the squared L2-norm.

The question is now to determine characteristic exponents α, β , and z, and also
the so called universality class of the model, such that for a system size of order L

one can characterize the scaling of the initial growth and the later saturation:

mean surface roughness ∼
{

tβ : t � Lz

Lα : t � Lz

Unfortunately our mathematical analysis of the problem is at an earlier stage and does
not allow yet to give rigorous conclusions on these questions. For analytic estimates
see for example [14], or we refer the reader to the rich physics literature.

Hill Formation and Coarsening Characteristic of all these models with an ad-
ditional lower order linearity is the formation of parabola shaped hills, with sharp,
almost corner like, valleys in between. See Fig. 1 for a one-dimensional numerical
calculation. But also in several two-dimensional experiments, due to an initial linear
instability of the flat surface, the solution exhibits many paraboloid hills with sharp
valleys in between. Over time these hills tend to coarsen, when larger hills just bury
the smaller ones. See [81] for a reduced model in one dimension given by the position
of the interfaces.

In none of the numerical or real world experiments chaotic or irregular behavior
was observed, which is different from other well-known and quite similar models
of surface growth. One example with similar structure is the Kuramoto-Sivashinsky
equation, which exhibits quite complicated dynamics and is also used to model the
propagation of flame fronts or interfaces inside of fluids.

1.2 Obstacles and Difficulties in the Mathematical Analysis of the Model

A crucial mathematical open problem for our model equation, with or without ran-
dom perturbations, is the uniqueness of global solutions. Indeed, in one space di-
mension it is possible to show existence of locally unique and smooth solutions, as
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Fig. 1 Four snapshot at time 0.2, 0.3, 0,4, and 0.7 of a numerical solution of the surface growth equation
on [0,2π ] with additional linear instability −10∂2

xh. The hills look like parabolas with sharp valleys in
between.

well as of global weak solutions, but unfortunately there is a gap in the regularity
requirements for the initial condition and thus global solutions are neither unique
nor smooth. As such the problem is reminiscent of the celebrated millennium prob-
lem of existence of global smooth solutions for the Navier–Stokes equations. Here in
two spatial dimensions the problem is even harder, at least at the level of existence of
weak solutions, due to some a-priori estimates that fail to be true in dimension higher
than one.

In dimension two, for the stochastic PDE, there is an additional difficulty: the
driving force, which is space–time white noise, is a rough forcing and in principle,
even in a weak formulation, the solution does not acquire enough regularity to give
a meaning to the nonlinearity. In the following, we shall discuss all these points in
more detail.

Local Solutions Local existence and uniqueness of solutions can be straightfor-
wardly proved by a fixed point theorem, both with and without noise perturbations.
Let us summarize the already known results here.

A first preliminary result on local uniqueness in spaces of quite regular functions
for the stochastic PDE in dimension d = 1 and d = 2 can be found in [10]. The ex-
istence and uniqueness of a regularized problem with a cut-off in the nonlinearity in
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dimension d = 2 has been studied in Hoppe, Linz & Litvinov [56]. Another approach
for local uniqueness and global existence based on Galerkin approximations com-
bined with local monotonicity and generalized coercivity conditions is established
by the application of an abstract result by Röckner et al. [71, 88]. But this seems, at
least in terms of initial conditions, not yet optimal, as it needs more regular initial
conditions than the critical case.

In the one dimensional case the uniqueness of local solutions with initial values
in a critical Hilbert space was established in [16]. This space is at the borderline of
regularity for the fixed point argument. See Sect. 3.1 for more details on the scaling
invariance of the equation and quantities critical for the scaling, namely quantities
invariant by scaling.

Existence and uniqueness in the largest possible critical space of initial condi-
tions where local existence and uniqueness holds can be achieved using the ideas
introduced by Koch & Tataru [62] for the Navier–Stokes equation. It has been im-
plemented for the surface growth equation in [17], and we summarize it in Sect. 3. It
turns out that this space is equivalent to the homogeneous Besov space Ḃ

0,∞∞ . But, as
we will see, there still remains a wide gap of regularity from the largest critical space
to the global a-priori bounds that are used to show global existence of weak solutions.
These are obtained in much weaker spaces.

Weak Solutions For d = 1 existence of global weak solutions follows by an
a-priori estimate of the mean squared height of the surface (see Sect. 1.5) and by
standard compactness methods. For the stochastic PDE this can be extended to com-
pactness in spaces of probability measures. The existence of global weak solutions
on bounded domains has been first studied for our equation in [12] (see also the ref-
erences therein), based on spectral Galerkin methods. See also the discussion of the
improved results in [9] below.

Unfortunately the estimate fails to hold in larger spatial dimensions. Without noise
in one spatial dimension, Stein & Winkler [103] used Rothe’s method, which is a
fully implicit discretization of the time-derivative, in order to verify the existence of a
global weak solution that is only uniformly bounded in a weak topology given by the
H−1-norm. This result has been extended by Winkler [115] to the two-dimensional
case, using energy type estimates for the Lyapunov functional

∫
eh dx (cf. Sect. 1.6).

Existence of weak solutions of the stochastic PDE in the physical dimension two
is, so far, an open problem, which should be solvable by combining the stochastic
approach with the results of [103, 115].

Convergence to Equilibrium Existence of weak solutions for the stochastic PDE
has been significantly improved in [9] using the method developed by Flandoli &
Romito [40, 42] (see also the related results [39, 41, 89, 91, 93]) in order to verify the
existence of a solution that defines a Markov process. We review this in Sect. 5. For
related results see [30, 34] and [47]. The method allows to define a Markov evolution
associated to the equation and thus to introduce invariant measures. These are random
initial distributions that are invariant under the dynamics. It turns out that for any
Markov process that defines a solution the invariant measures are stable enough that
there is relaxation to the unique equilibrium.



238 D. Blömker, M. Romito

Blow-up and Singularities Our analysis shows that local solutions are smooth,
although we do not control the lifespan of the solution. The mathematical results
known so far do not rule out the emergence of singularities. This question is wide
open, but some analytic results show that there are quite strong limitations on the
type of blow up. We conjecture that if there is a blow up, most likely it will be a
logarithmic pole in the sharp valleys.

In contrast, many numerical experiments do not report any problems of blow up,
see Hoppe & Nash [57, 58] or [84, 86]. Furthermore, numerical experiments from
Blömker, Gugg & Raible [12] indicate a fast convergence of spectral Galerkin meth-
ods for statistical quantities like the averaged surface roughness for the stochastic
PDE.

There are also unpublished numerical results by Michael Winkler that seem to
indicate blow-up behavior for the deterministic equations with an additional strong
linear instability, that is a lower order term which should not influence the question of
existence and uniqueness. On the contrary Nolde et al. [15] are working on numerical
verification of uniqueness, and their preliminary results look promising. These are
based on Robinson et al. [24, 33] or related results by Morosi & Pizzocchero [73–75].
The method though only works for given fixed initial conditions or a fixed small ball
of initial conditions. There are strong hints, see [94] for a general result and heuristic
considerations, that additive noise should not be effective in preventing blow-up when
this already happens in the deterministic equation.

Energy Estimates Are Not Sufficient to Prevent Blow-up Recently, there has
been interest in finding solutions for modified Navier-Stokes equations that do blow
up by failing to be regular. Tao [108] constructed a modified nonlinearity that exhibits
the same energy estimate than 3D-Navier-Stokes, but does admit solutions that blow
up in finite time. A different approach in that spirit was presented by Li & Sinai [68,
69]. They constructed complex valued solutions of the Navier-Stokes equation that
remain bounded in L2 but blow up in finite time. The key idea in all these approaches
is that due to the structure of the nonlinearity in Fourier space the mass is transported
faster to higher Fourier modes than it is absorbed by dissipation. Thus leading to a
blow up of regularity, when a non-trivial portion of the mass reaches infinity in finite
time. In Sect. 7 we present a simplified result for our equation, proving that many
complex-valued solutions blow up in finite time. One might claim that this is not
surprising, as the standard L2-energy estimate fails to be true for complex valued
solutions. However the lower bound derived in order to establish the blow-up does
not blow up in L2, it diverges only in spaces of more regular functions.

The Randomly Forced Problem in the Physical Dimension Two When we con-
sider the problem in dimension two, the regularity of initial conditions is not the only
issue, as the weak regularity of the forcing starts playing a crucial role. Thus the dif-
ficulty due to the presence of noise is the lack of regularity of solutions. In dimension
d = 1 this is not an issue, as we expect solutions of the stochastic PDE to be contin-
uously differentiable with respect to space and continuous in time, but in d = 2 the
solution fails to be that regular. As a consequence the square of the gradient |∇h|2 in
the nonlinearity is not defined directly.
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A general solution is to rely on the concept of regularity structures introduced by
Martin Hairer [51], which was awarded the Fields medal recently, or the significantly
simpler but less powerful approach of paraproducts and controlled distributions in-
troduced by Gubinelli, Imkeller & Perkowski [48]. In order to highlight the key prob-
lems we present in Sect. 4 the results of [18], based on results in [29], that apply
similar ideas to our equation. This is the simplest case of the approach of Hairer [50],
or Gubinelli et al. Here we do need to give a meaning to the quadratic nonlinearity
for Gaussian random variables that are not regular enough to define the nonlinearity
directly. On the other hand the other terms appearing in the proof are regular enough
so that there is no trouble in their definition.

1.3 The Model

Let us give more details about the model under consideration. We study the following
equation for the graph of a growing surface

∂th = −�2h − �|∇h|2 + ξ (1)

subject to periodic boundary conditions on the domain [0,L]d (i.e., h and all its
derivatives are L-periodic). The function h(t, ·) models a height profile at time t > 0,
so d = 1 and d = 2 are the physically relevant dimensions. The noise ξ models al-
ways space-time white noise, for instance due to fluctuations in the incoming gas of
particles. We comment later in more detail on the mathematical model of the noise,
which is given by the generalized derivative of a suitable Wiener process in Hilbert-
space.

The equation is simplified here in the sense that lower order terms are left out,
which do not present any obstacle in the theory of local existence and uniqueness,
although some might cause problems for global estimates in the proof of global exis-
tence. We will discuss on possible additional terms in more detail in the next section.

Also for simplicity of presentation we consider only the rescaled version with non-
dimensional length-scales. We can rescale the variables t , x, and h in order to move
all relevant physical constants into the length of the domain L.

Remark 1 (Mass Conservation) Due to the fact that the integral over a Laplacian
vanishes for periodic boundary conditions, the deterministic equation conserves the
total mass. Thus we always assume a moving frame condition

∫
[0,L]d

h(t, x)dx = 0.

To be more precise, the mean of h for solutions of (1) decouples from the equation
and the spatial average of the solution is just the spatial average of the noise, which
behaves like a Brownian motion. Thus for simplicity we always consider a moving
frame and mass-conservative noise by just subtracting the spatial mean of the noise
in (1). Moreover, by a similar transformation one removes any constant growth rate
of the surface from the equation.



240 D. Blömker, M. Romito

Remark 2 (Boundary Conditions) Although the surface is in experiments not pe-
riodic, these boundary conditions together with the assumption of a moving frame
became the standard conditions in the physics literature for models of this type, as
the effect of boundary condition is usually neglected in experiments. The surface is
grown on large domains, and only small interior regions of almost periodic pattern
are then measured. Sometimes the model has been considered also on the whole real
line without decay condition at infinity, nevertheless we do not examine this case here
in detail, as space-time white noise would make the solution at any time unbounded
for |x| → ∞.

From a mathematical point of view Neumann boundary conditions are quite simi-
lar for the problem (1) studied here, as they allow for similar energy estimates.

1.4 Related Models

In our presentation we ignore lower order terms, as we are after possible unique-
ness or non-uniqueness. The main terms for questions about existence and regularity
are the dominant fourth order linear operator �2h and the quadratic non-linearity
�|∇h|2.

Examples of lower order terms present in the models are the Kuramoto-
Sivashinsky term |∇h|2, which seems to be responsible for a saturation of hill sizes
during coarsening, or a linear instability given by −�h, which triggers an initial in-
stability of a flat surface leading the formation of hills. Both lower order terms are
quite important for the dynamical behavior, but not for questions regarding regu-
larity and blow up. Moreover, the presence of these terms complicates calculations
significantly (see [12] for an example).

In order to take into account −�h in bounds uniform in time that yield global
existence in d = 1, gauge functions have to be used, as in Blömker & Hairer [13].
See also Collet et al. [26], or Temam [110]. These yield estimates relative to a fixed
surface (the gauge function) and its translations. But this is quite technical and up to
now in our model it is only applied to Neumann boundary conditions. For periodic
boundary conditions this question is still open.

There is also the choice of adding an additional cubic term ∇ · (|∇h|2∇h) that
does not change the scaling properties of the equation and that, equipped with the
right sign, gives additional L4([0, T ],W 1,4) regularity in a-priori estimates and even
simplifies the proof of existence and uniqueness of global solutions. See for example
Agélas [2].

An interesting nonlinearity that obeys the same symmetries as the terms present
in (1) is det(Hess(h)). This nonlinearity allows for a gradient flow structure for the
equation [35, 36]

∂th = −�h − det
(
Hess(h)

)
with energy of the type

∫
�h|∇h|2dx, which is not bounded from below. Here Es-

cudero, Gazzola & Peral [35] showed that this nonlinearity alone leads to a blow up
in finite time. Thus the conjecture is that adding additive noise will eventually always
lead to a blow up, see [94] for related ideas. The combination of both nonlinearities
destroys the gradient structure and nothing is known about the dynamics.
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Let us briefly comment on some well studied related models:

1. The Kadar-Parisi-Zhang (KPZ) equation is [59]

∂th = �h + |∇h|2 + ξ.

For the deterministic equation, there is no problem with existence and unique-
ness and via the Cole-Hopf transform u = eh one can transform it to a linear heat
equation. The stochastic equation is the toy-model for the theory of regularity
structures [50, 51], as already in d = 1 solutions are not regular enough to define
the nonlinearity in a trivial way. Here a renormalized nonlinearity has to be taken
into account that takes care of divergent constants. This is different from the non-
linearity in (1), as here the infinite constant of the renormalization is eliminated
by the additional Laplacian.

2. The Kuramoto-Sivashinsky equation is

∂th = −�2h − �h + |∇h|2 + ξ.

The deterministic equation (as well as the stochastic equation) for d = 1 has no
problem with local and global existence and uniqueness although the dynamics
seems to be much richer than for (1). But for d = 2 there is a lack of global es-
timates that would ensure global existence. Moreover, for the stochastic equation
for d = 2 the noise is too rough, and one needs to consider regularity structures
and a renormalized nonlinearity, in order to define the equation.

3. Of course also the Navier-Stokes equation has many similarities, and many meth-
ods that work for the other equations were originally developed for Navier-Stokes.
But as the type of equation is different, we do not give it in full details here.

1.5 A-priori Estimates (1D-Deterministic)

As already pointed out, for global existence we heavily rely on the availability of an
energy estimate. The key point for d = 1 is a suitable cancellation of the non-linearity,
namely using integration by parts

∫ L

0
h∂2

x (∂xh)2 dx = 1

3

∫ L

0
∂x(∂xh)3 dx = 0. (2)

This is the main (and probably only) ingredient to derive useful a-priori estimates.
Unfortunately, it already fails for d = 2. Formally multiplying the deterministic equa-
tion by h and integrating with respect to x, we obtain using (2),

∂t‖h(t)‖2
L2 + 2‖∂2

xh(t)‖2
L2 ≤ 0 and ‖h(t)‖2

L2 + 2
∫ t

0
‖∂2

xh(s)‖2
L2 ds ≤ ‖h(0)‖2

L2 .

(3)
Thus, by Poincaré inequality and Gronwall’s Lemma,

‖h(t)‖L2 ≤ e−ct ‖h(0)‖2
L2 and

∫ ∞

0
‖h(t)‖2

H 2 dt ≤ ‖h(0)‖2
L2 .
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As explained before this estimate is only valid for smooth local solutions up to a
possible blow up, or one could use a spectral Galerkin approximation to verify it
for global solutions. Note that the regularity implied by this estimate is enough for
proving existence of solutions (see Sect. 5), but is lower than the critical regularity,
that is, the minimal amount of regularity that would ensure uniqueness (see Sect. 3).
In other words, the above regularity properties are super-critical with respect to the
scaling invariance of the equation.

These estimates extend to the stochastic equation by a standard transformation.
See Sect. 2.4 below for details. Let us remark that for the stochastic case it is even
possible to bound exponential moments of the L2-norm. See [37, 102].

1.6 A Lyapunov-Type Functional

There is another a-priori estimate for smooth local solutions, which was helpful for
d = 2, but unfortunately it does not hold for spectral Galerkin method or any other
approximation using projections,

1

α2

d

dt

∫ L

0
eαh dx =

∫ L

0
eαh hxhxxx dx + 2

∫ L

0
eαh h2

xhxx dx

= −
∫ L

0
eαh h2

xx dx + (2 − α)

∫ L

0
eαh h2

xhxx dx

= −
∫ L

0
eαh h2

xx dx − 1

3
(2 − α)α

∫ L

0
eαh h4

x dx.

Thus, for α ∈ (0,2),
∫ L

0
eαh(t) dx ≤

∫ L

0
eαh(0) dx for all t > 0

and

(2 − α)

3
α3

∫ ∞

0

∫ L

0
eαh h4

x dx dt + α2
∫ ∞

0

∫ L

0
eαh h2

xx dx dt ≤
∫ L

0
eαh(0) dx.

With some more effort (see Stein & Winkler [103]) one can see that these terms are
bounded independently of h(0) for large t .

The positive part h+ = max{0, h} now has much more regularity than the negative
part h− = max{0,−h}, so a possible blow up seems to be more likely to −∞ than to
+∞. Unfortunately, this regularity is still not sufficient for uniqueness of solutions.
It is just below the critical B

0,∞∞ -regularity. See Sect. 3.
Nevertheless, this estimate was the key in [115] to prove the existence of global

solutions in dimension d = 2 using a discretization in time as the approximation
method.

1.7 Notation

Let us finish the introduction by introducing some notation and properties used
throughout the paper. We denote by �per the Laplacian subject to periodic boundary
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conditions, and by A = −�2
per the biharmonic operator. Its analytic semigroup is

denoted by S(t) = etA for t ≥ 0.
Let D∞ be the space of infinitely differentiable L-periodic functions on R with

zero mean in [0,L]d . Likewise denote by Ck
per the space of L-periodic functions

with zero mean that are k-times continuously differentiable. Define for p ∈ [1,∞]

Lp =
{
h ∈ Lp

([0,L]d) :
∫

[0,L]d
h(x) dx = 0

}
.

with the standard Lp-norm. Here L2 is a Hilbert-space with norm and scalar product

‖f ‖2
L2 =

∫
[0,L]d

|f (x)|2 dx and 〈f,g〉L2 =
∫

[0,L]d
f (x)g(x) dx.

Let (ek)k∈Nd
�

be the orthonormal basis of H = L2 given by products of the trigono-

metric functions sin(2miπxi/L) and cos(2miπxi/L) with m ∈ Nd
� = Nd \ {0}, and

let λk be the eigenvalues of A such that

Aek = λkek.

Notice that λk ∼ −|k|4. With a slight abuse of notation, we also denote the complex
basis by (ek)k∈Zd

�
, which is given by the normalized ei2πk·x/L for k ∈ Zd

� = Zd \ {0}.
The Sobolev spaces Hγ for γ ∈ R are defined as the domains of fractional powers

of −A, which are equivalent to standard Sobolev spaces (up to the zero-mean con-
straint). See for example Henry [55], Pazy [80], or Lunardi [72]. Here we use the
explicit expansions of norms in term of Fourier series

Hγ =
{
u =

∑
k∈Nd

�

αkek : ‖u‖2
Hγ =

∑
k∈Nd

�

α2
k |λk|γ /2 < ∞

}
.

This is equivalent to saying that Hγ consist of all functions h in H
γ

loc(R
d) which are

L-periodic and satisfy
∫
[0,L]d h(x) dx = 0. Furthermore, the standard Hγ ([0,L]d)-

norm is an equivalent norm on Hγ . We also use the space

W1,4 := {
u ∈H1 : ‖u‖W1,4 = ‖u‖L4 + ‖∇u‖L4 < ∞}

.

Note that all usual Sobolev embeddings, such as for d = 1 for example H1 ⊂
C0([0,L]) or H2 ⊂ W1,4 still hold. See [96] or [1] for details on Sobolev spaces.

The nonlinearity is throughout the paper denoted by

B(u, v) = �(∇u · ∇v).

This is a bilinear map, which is defined for all u,v ∈ H1 with values in a Hγ with γ

sufficiently negative. We have the following bounds for d = 1,2:

Lemma 1 If α,β, γ ≥ 0 and α +β +γ ≥ d/2 (with strict inequality if at least one of
the numbers is equal to d/2), then B maps H1+α ×H1+β continuously into H−2−γ .
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In particular, there exists c = c(α,β, γ ) such that

‖B(u1, u2)‖H−2−γ ≤ c‖u1‖H1+α‖u2‖H1+β .

Proof Explicit calculation using Fourier series or abstract Hδ bounds on products of
Hα and Hβ in the space H−γ [96]. For d = 2 see [18, Lemma A.1] for d = 1 see
[19]. �

The following Lemma is necessary for d = 2 when one argument in B fails to
have a gradient.

Lemma 2 Fix dimension d = 2. Let ε ∈ (0,1) and γ > 0. For every α ∈ (0,1) and
q > 2 such that 1 − α + 2

q
< ε ∧ γ , there is a constant c > 0 such that

‖B(u1, u2)‖H−2−γ ≤ c‖u1‖Wα,q ‖u2‖H1+ε , for every u1 ∈ Wα,q and u2 ∈H1+ε .

Proof Straightforward. See [18, Corollary A.3] or Sobolev space bounds for products
of distributions and regular functions in [96]. �

Note that the conditions on α, γ , and ε in the Lemma above are sufficient for the
results presented here, but could be relaxed by using the paracontrolled approach.

2 Brief Introduction to SPDE

Here we set up the general framework necessary to treat our main equation (1), and
provide the definitions of the concept of mild and weak solutions as well as some
regularity properties of linear SPDEs needed later. In order to be self-contained, we
also present a brief introduction to SPDEs tailor-made for the needs of our model.
For details on stochastic partial differential equations (SPDEs) we refer to [25, 31,
49, 70, 82, 111], the recent second edition of Da Prato & Zabczyk [32], or the review
article [102].

In a formal way (using ξ = ∂tW and multiplying by dt) we can rewrite (1) as an
abstract stochastic evolution equation

dh = (
Ah + B(h,h)

)
dt + dW, (4)

where W is a suitable Q-Wiener process, which we define below. Moreover, we need
to give a rigorous meaning to the formal equation (4).

Let us remark that for stochastic PDEs on unbounded domains one can use the
formulation of Walsh [113], although one has to consider that for space–time white
noise both the stochastic convolution Z(t, x) and its derivative ∇Z(t, x) (if it ex-
ists) are unbounded for |x| → ∞. We avoid these technicalities here, by considering
periodic boundary conditions only.

Let us first give the abstract definition of a Q-Wiener process W and later give an
explicit representation in terms of Fourier series. Fix for the whole paper a probability
space (Ω,A,P).
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Definition 1 (Q-Wiener Process) Given a symmetric, non-negative, and continuous
operator Q on H, we call a H-valued stochastic process {W(t)}t≥0 a Q-Wiener pro-
cess, if

– W(0) = 0 (P-almost sure).
– W has (P-almost sure) continuous trajectories (or paths):

{ [0,∞) → H
t �→ W(t).

– The increments of W are stochastically independent, i.e. the random variables

W(t1), W(t2) − W(t1), . . . , W(tn) − W(tn − 1)

are independent for any choice of n ∈ N and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn.
– The increments are Gaussian with W(t)−W(s) ∼ N (0, (t −s)Q) for all 0 ≤ s ≤ t .

Note that in case H = R the covariance operator Q = 1 is just a number, and
the Wiener process is a real-valued standard Brownian motion. See [60, 76, 98] for
properties.

In the definition above we used the notation X ∼ N (0,Σ) for a H-valued random
variable X and a non-negative symmetric operator Σ on H, which means that for all
test-functions ϕ in H the real-valued random variable 〈X,ϕ〉 is Gaussian (i.e. normal)
distributed with

expectation E〈X,ϕ〉 = 0 and variance E〈X,ϕ〉2 = 〈Σϕ,ϕ〉.
Moreover, we have the covariance

E〈X,ϕ〉〈X,ψ〉 = 〈Σϕ,ψ〉 for all ϕ,ψ ∈H.

In the following we will always consider Q : L2 → L2 to be a bounded symmetric
linear operator such that

Qek = α2
kek, k ∈ Nd

� ,

so that Q is non-negative. This is sufficient to model all kinds of spatially homoge-
neous Gaussian noise ξ = ∂tW such that formally

Eξ(t, x) = 0 and Eξ(t, x)ξ(s, y) = δ(t − s)q(x − y),

where q is the spatial correlation function (or distribution). Now Q = q�, which is
the convolution operator with q . For details see [8], the references therein, and also
[32, Sect. 4.15].

Note that mass-conservation is already built into the model of the noise by the
choice of H.

Remark 3 A Wiener process is not uniquely defined. From the definition it is easy to
check, that it exhibits self-similarity and shift invariance:
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– δ{W(δ−2t)}t≥0 is a Q-Wiener process for all δ > 0.
– {W(t + s) − W(s)}t≥0 is a Q-Wiener process for all s > 0.

We call an I -Wiener process a standard cylindrical Wiener-process. Obviously,
this exists only in a generalized sense, as W(t) /∈ H. This follows from the fact that
for any Q-Wiener process a direct calculation shows E‖W(t)‖2 = trace(Q), together
with Fernique’s theorem [32, Sect. 2.21] stating that H-valued Gaussian random vari-
ables have all and especially second moments.

For a cylindrical Wiener process, one can show from the definition that for any
orthonormal basis {fk}k∈N of smooth functions the random variables 〈W(·), fk〉 are
a family Brownian motions. Additionally, one can show that they are stochastically
independent [32, Prop. 4.3]. Moreover,

〈
W(t),ϕ

〉 =
∞∑

k=1

〈
W(t), fk

〉〈ϕ,fk〉

is a well defined real-valued Gaussian with mean 0 variance ‖ϕ‖2 and covariance
〈ϕ,ψ〉.

Example 1 For a sequence of independent identically distributed (i.i.d.) standard
Brownian motions {βk}k∈N, an orthonormal basis {fk}k∈N of H, and {αk}k∈N ⊂ R
such that

∑
k∈N α2

k < ∞ define

W(t) =
∑
k∈N

αkβk(t)fk.

Then W is a Q-Wiener process with Qek = α2
kfk .

Conversely, any Q-Wiener process can be written as a series expansion [32,
Prop. 4.3], where fk is an orthonormal basis of eigenfunctions of Q with correspond-
ing eigenvalues αk . Moreover, if the αk are only bounded, we obtain a cylindrical
Wiener process.

Remark 4 One could assume in the definition that the Wiener-process is Hölder con-
tinuous in time for any exponent below 1

2 , but we do not need this here.

2.1 Regularity of the Stochastic Convolution

We consider a standard cylindrical Wiener process and expand it with respect to the
eigenfunctions {ek}k∈Nd

�
, taking into account the mass-conservation, i.e. for a family

of i.i.d. standard Brownian motions {βk}k∈Nd
�

we have

W(t) =
∑
k∈Nd

�

βk(t)ek. (5)
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Define the corresponding Ornstein-Uhlenbeck process for t > 0 as the following Itō-
integral:

Z(t) =
∫ t

0
e(t−s)A dW =

∑
k∈N

∫ t

0
e(t−s)λk dβk(t)ek. (6)

This can be defined path-wise without Itō-calculus using the integration by parts for-
mula:

Z(t) = W(t) + A

∫ t

0
e(t−s)A W(s)ds.

Note that Z solves formally

∂tZ + �2Z = ∂tW with Z(0) = 0.

Let us first show that Z is not too regular in space:

Lemma 3 For every t > 0,

E
[‖Z(t)‖2

H2−d/2

] = ∞

and Z /∈H2−d/2 for all times, almost surely.

Proof Using the explicit representation of Z in Fourier series and Itō-isometry, yields

E
[‖Z(t)‖2

H2−d/2

] =
∑
k∈Nd

�

|k|4−d

∫ t

0
e2λk(t−s) ds ≤ C

∑
k∈Nd

�

1

2|k|d
(
1 − e2λkt

) = ∞.

The almost sure statement follows from Gaussianity. See for example [20, Theorem
2.5.5]. The key point is due to Fernique’s theorem: The probability of Z being in a
given Banach space is positive if and only if Z has some exponential moments in this
space. �

Lemma 3 above shows for example that for d = 2 the gradient of Z is not defined
as a function. On the other hand, Z has a “fractional” derivative of all orders smaller
than 2 − d/2 not only in L2 but also in all Lp .

Proposition 1 For every p ≥ 1 and s ∈ (0,2 − d/2),

sup
t>0

E
[‖Z(t)‖p

Ws,p

]
< ∞.

Proof We rely on the explicit representation of the norm [96, Sect. 2.2.4 & 2.4.4] for
s ∈ (0,1). For d = 1 and s ∈ (1, 3

2 ) we need to consider the regularity of ∂xZ(t) in
Ws,p .

‖z‖p
Ws,p = ‖z‖p

Lp +
∫

[0,L]d

∫
[0,L]d

|z(x) − z(y)|p
|x − y|d+sp

dx dy.
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Use the Fourier representation of Z with Zk = 〈Z,ek〉 to get:

E
[|Z(t, x) − Z(t, y)|2] ≤ c

∑
k∈Nd

�

E
[|Zk(t)|2

]|ek(x) − ek(y)|2

≤ c
∑
k∈Nd

�

1 ∧ |k · (x − y)|2
|k|4

Now for any γ ∈ (s,min{1,2 − d/2}) we find a constant such that

E
[|Z(t, x) − Z(t, y)|2] ≤ c

∑
k∈Nd

�

|k|2γ−4|x − y|2γ ≤ C|x − y|2γ .

By Gaussianity, for every p ≥ 1, E[|Z(t, x) − Z(t, y)|p] ≤ cp|x − y|pγ . Therefore,

E

[∫∫ |Z(t, x) − Z(t, y)|p
|x − y|2+sp

dx dy

]
≤ C

∫∫
|x − y|−d+p(γ−s) dx dy < ∞.

The missing cases and the Lp-norm are bounded in a similar way. �

Remark 5 (Continuity in Time) The regularity in time from the previous proposition
is only Lp , but we can improve this, with standard arguments, to L∞ (using the
factorization method) or even Hölder continuity (using also fractional norms in time).
For details we refer to the methods introduced in [31], see for example [28].

2.2 Mild Formulation

As solutions of SPDEs are usually not regular enough to give a meaning to (4), the
solution is interpreted in some weaker sense. One possibility is the mild formulation
given by the variation of constants formula:

Definition 2 (Mild Solution) We call a continuous stochastic process h ∈
C0([0, τ ∗),Hζ ) for some almost sure positive stopping time τ ∗ > 0 a mild solution
of (4) with initial condition h0 if

h(t) = etA h0 +
∫ t

0
e(t−s)A B

(
h(s), h(s)

)
ds + Z(t)

for all t ∈ (0, τ ∗) P-almost surely.
We call a mild solution (strongly) unique, if for a given h0 and fixed process Z

any two mild solutions coincide up to the minimum of their stopping times.

Now the main problem in this setting is to determine the regularity of Z, which
can be read in terms of the covariance of the driving noise. Once we know this, we
can solve the equation using Banach’s fixed point argument.

Clearly mild solutions can be defined on different spaces than C0([0, τ ∗),Hζ ),
especially with weaker regularity at t = 0. The definition given above can be eas-
ily modified for these different settings without serious difficulties, so we will not
provide further details and will keep using the notion of “mild solution”.
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2.3 Weak Formulation

Another concept of solutions is the weak formulation, where (4) is integrated against
smooth functions. Recall first the following result, an easy consequence of the
Poincaré inequality, which ensures that all integrals in (7) are well defined.

Lemma 4 If u is a distribution on Rd such that its gradient ∇u ∈ L2
loc([0,∞),L2),

then u ∈ L2
loc([0,∞),L2) and thus u ∈ L2

loc([0,∞),H1).

A weak solution for (1) with initial condition h0 ∈ L1 is any distribution h with
locally square integrable gradient ∇h ∈ L2

loc([0,∞),L2) such that for every smooth
function φ, which is compactly supported in time and L-periodic in space, i.e. φ ∈
C∞

c ([0,∞),D∞),

∫ ∞

0

∫
[0,L]d

h(t, x)∂tφ(t, x) dx dt

−
∫ ∞

0

∫
[0,L]d

[
h(t, x)�2φ(t, x) + |∇h(t, x)|2�φ(t, x)

]
dx dt

= −
∫

[0,L]d
h0(x)φ(0, x) dx +

∫ ∞

0

∫
[0,L]d

W(t, x)∂tφ dx dt. (7)

Lemma 4 ensures that all terms in the formula above are well defined. Moreover, the
solution is only defined up to constants.

There are many other definitions of a weak solution imposing additional regularity
or using test-functions only in space as in the following Proposition.

Proposition 2 (Mild Implies Weak) Assume Z is well defined in H. Let h be a mild
solution in H as in Definition 2 with 〈B(u,u),ϕ〉 ∈ L1([0, τ �]) for all ϕ ∈ D(A),
then u is a weak solution. This means that for any ϕ ∈ D(A) we have

〈h(t) − h0 − W(t),ϕ〉H =
∫ t

0
〈h(s),Aϕ〉 + 〈B(

h(s), h(s)
)
, ϕ〉ds.

Idea of Proof The key idea of proof is to note that 〈etA u,Aϕ〉 = ∂t 〈etA u,ϕ〉. Then
one needs to check that due to the additional regularity assumption all terms are well-
defined and one can integrate by parts. �

We remark, that the mild formulation in Proposition 2 is not the same as in (7),
but one can derive (7) by considering first elementary step functions with values in
C∞

per([0,L]d) and then approximate φ.

2.4 Transformation to a Random PDE

Indeed, using the standard method of looking at the difference v = h − Z between
the solution and the stochastic convolution, the stochastic PDE can be transformed
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into a random PDE.

∂tv = Av + B(v, v) + 2B(v,Z) + B(Z,Z). (8)

If the stochastic convolution Z is sufficiently regular, then for each instance of chance
the path-wise solvability for the SPDE is completely analogous to the deterministic
results and one only needs to consider the two additional lower order terms B(v,Z)

and B(Z,Z).
This covers many examples like our equation with d = 1, but for the surface

growth equation in d = 2 the OU-process Z is no longer regular enough to define
B(Z,Z). Moreover, we need more regularity of v, in order to define the product of
∇v with the distribution ∇Z in B(Z,Z). See Sect. 4.

3 Local Uniqueness

In this section, we rely on the transformation presented in the previous Sect. 2.4. Thus
by working path-wise for each possible realization of the stochastic convolution, we
can rely on purely deterministic arguments to verify the local existence and unique-
ness of solutions. Nevertheless, at the end of this Sect. 3 we demonstrate in Sect. 3.7
how all the deterministic ideas can be used to solve the stochastic equation (1).

Following the technique introduced in the remarkable paper by Koch & Tataru [62]
on the Navier–Stokes equations, we review the results of [17] on local existence and
uniqueness of solutions with initial data in the largest possible critical space where
weak solutions make sense. This space contains all previous spaces where analogous
results were proved.

In contrast to using relatively simple Hilbert spaces as in other sections of this
paper, we need to use Besov spaces here, which makes this section slightly less intro-
ductory. Let us remark that the same method has been applied to other fourth order
problems [63, 114].

Our main motivation to study (1) in the largest possible space actually comes from
the stochastically perturbed equation, where, due to noise, solutions are not regular
enough, and we intend to use as least regularity as possible. However, for dimension
d = 2 this approach does not work. We comment later in Sect. 4 on this. In view of
the transformation of Sect. 2.4 we consider first only the deterministic equation, and
add sufficiently smooth noise later. Thus consider

∂th = Ah + B(h,h), h(0) = h0. (9)

At least for dimension d ≤ 3 the largest critical space of initial conditions introduced
by Koch & Tataru is in our setting equivalent to the homogeneous Besov space Ḃ

0,∞∞ .
This space is much simpler to work with, and it simplifies the results on existence and
uniqueness. Moreover, we see in Sect. 3.6 that all such solutions are smooth in the
space and time variable for t > 0.

Remark 6 (Smooth Initial Conditions) For regular initial conditions, for example in
H1 for d = 1, standard arguments using a fixed point theorem in C0([0, T ],H1)
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assure uniqueness of local solutions. Moreover, one can continue the solution in H1

until the norm blows up in that space. One can also verify that small initial conditions
lead to the global existence of a small smooth solution for all times. Here we can go
below that regularity for uniqueness of solutions. But we are still far from being able
to prove uniqueness of global solutions in the general case, as they are bounded for
d = 1 only in L2.

Let us remark that global existence and uniqueness for small initial conditions was
also established in [88] for multiplicative noise, at least with high probability.

3.1 Notion of Critical Spaces

An account on the scaling heuristic for the Navier-Stokes equations can be found for
example in Cannone [22], such arguments are the basis of the celebrated result on
partial regularity of Caffarelli, Kohn, & Nirenberg [21].

The rationale behind the method is the following. First, notice that (9) is on the
whole Rd invariant under the scaling transformation

h(t, x) −→ hλ(t, x) = h
(
λ4t, λx

)
. (10)

If X is a functional space for h (for example L∞(0,∞;L2(Rd)) or time-independent
like H 1(Rd)), we can consider how the norm of X scales with respect to the trans-
formation (10) above. If

‖hλ‖X = λ−α‖h‖X,

then we can distinguish the three cases:

α < 0, sub-critical α = 0, critical α > 0, super-critical.

The super-critical case corresponds to small-scales behavior and is related to low
regularity, typically to topologies where possibly existence of weak solutions can be
proved, but no regularity or uniqueness. In the super-critical case we can think of the
nonlinearity of the problem as a non-negligible perturbation of the linear equation.

In the sub-critical case with sufficiently high regularity, it is possible to give good
bounds on the nonlinearity and thus proceed with a fixed-point argument yielding
uniqueness and existence at least locally. This is due to the fact that in this regime the
nonlinearity of the problem is a perturbation of order smaller than the order of the
linear part.

Due to scaling we can decrease the size of the initial conditions in the sub-critical
case, thus we can rely on a result of the type: Small data implies global existence.
Hence, the critical cases are the most interesting ones.

Consider spaces X (depending on the space variable) and YT (depending on both
variables, with t up to T > 0), then in order to have a regularity criterion based on YT ,
the following statements must hold,

1. there is a unique local solution for every initial condition in X,
2. the unique local solution we have found is regular, and
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3. the unique local solution can be continued up to time T , as long as its norm in YT

stays bounded.

The above analysis has been extensively carried out in numerous papers for the three
dimensional Navier-Stokes equations (see for examples references in Cannone [22]).
The first paper dealing with such aims were Prodi [83] and Serrin [99], see also Beale,
Kato & Majda [7].

We want to point out though that the scaling heuristic is an oversimplification
where we look at the nonlinearity of the problem only in terms of its size. Tao [108]
for instance considers a large class of problems that “look like” the Navier–Stokes
equations in terms of their scaling and their continuity properties, and that develop
singularities in finite time. On the other hand Barbato et al. [4] show global exis-
tence and uniqueness in the super-critical regime for the viscous dyadic Navier Stokes
model. We finally notice, see [5, 6, 107], that at the critical level one can still allow
for a super-critical logarithmic correction.

3.2 Setting

As outlined in the previous section, the interesting norms are the critical ones that
do not change under rescaling. Thus we consider our periodic solutions extended
to Rd and use the scaling invariant version (under (10)) of the L2

loc-space for the
gradient ∇h, defined by the following norm:

‖h‖X 0 :=
(

sup
x∈Rd ,R>0

{
1

Rd+2

∫ R4

0

∫
BR(x)

|∇h|2 dy dt

}) 1
2

.

This definition follows the ideas of [62] and is the largest critical space in which
weak solutions still are defined, as we need a locally square integrable gradient, in
order to have the weak formulation in (7) defined. Our first aim is to state a simpler
representation of the bi-caloric extension (see below) in this space.

Define therefore the linear space X of functions such that

‖k‖X = sup
t>0

{
t

1
4 ‖∇k(t)‖∞

}
< ∞.

A local in time version of this space can be defined for any R > 0 by

‖k‖XR
:= sup

t≤R4

(
t

1
4 ‖∇k(t)‖∞

)
.

Note that we always identify functions that differ only by a constant. This is motivated
by the fact that the equation is mass-conservative.

For an L-periodic function, we denote etA k as the bi-caloric extension of k. Note
that the semigroup extended on the whole Rd is also given by the convolution with
the Greens function G(t, x), which has the Fourier transform (with respect to the
space variable) Ĝ(t, ξ) = et |ξ |4 .
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Denote by B the homogeneous Besov space Ḃ
0,∞∞ , where the dot denotes mass

conservation. We use an equivalent norm on B given by the bi-caloric extension

‖k‖B := ‖ etA k‖X = sup
t>0

{
t

1
4 ‖∇ etA k(t)‖∞

}
.

We define similarly local versions BR . See for instance [66] for a characterization of
Besov spaces in terms of heat kernels. Here we use the bi-Laplace operator A, which
changes the scaling. As the operator is fourth order, in the definition of B one would

expect from parabolic regularization that the derivative and the t
1
4 annihilate each

other.
The following proposition shows that the space B is actually equivalent to the

caloric extension in the scale-invariant space X 0. We discuss further below, what
kind of functions are in these spaces.

Proposition 3 (Proposition 2.2. of [17]) Assume d ≤ 3. Then etA k ∈X 0 if and only if
k ∈ B and the norm in B is equivalent to the norm defined by the bi-caloric extension
in X 0.

This means, that there are constants c1, c2 > 0 such that

c1‖k‖B ≤ ‖ etA k‖X 0 ≤ c2‖k‖B. (11)

Idea of Proof The key point is to prove (11). The inequality on the right holds in any
dimension d ≥ 1 since it is straightforward to check that ‖ · ‖X 0 is bounded by ‖ · ‖X .
For the inequality on the left, one can use the explicit representation of the semigroup
in terms of the Greens function. Moreover, by scaling and translations invariance, it

is sufficient to show a bound on t
1
4 (∇ etA k)(x) for t = 1 and x = 0, only. This is then

technically quite involved. For details see [17, p. 369]. �

3.3 Examples

The Besov space B is well understood, it contains for example the space BMO of
functions of bounded mean oscillations. In view of the fixed point argument of The-
orem 1 we wish to recall the discussion of [17], that is for which initial conditions it
is possible to find R > 0 such that the initial condition is small in the BR norm. For
this aim define

Z = {
k : Rd → R : ‖k‖BR

→ 0 as R ↓ 0
}
.

Functions in Z correspond to initial conditions where it is possible to solve (9) lo-
cally in BR . In this section we give a few examples of subspaces of Z . Then we
show that bounded functions in L∞(Rd), although contained in B, are not contained
in Z . Hence the method of proof for local uniqueness presented here fails for initial
conditions in L∞(Rd) with large norm.

Lemma 5 The following statements hold,

– if k : Rd → R is bounded and uniformly continuous, then k ∈ Z , i.e. the periodic
extension of the space D∞ is in Z ,
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– if k : Rd → R has bounded gradient on Rd , then k ∈ Z ,
– the periodic extension of Hd/2 is in Z .

The proof of this Lemma is established by direct calculations using the represen-
tation of the norms and the Greens function. See Lemma 3.1 of [17] for more details.

In the following we only give an example on the whole Rd , but it is easy to extend
this to the periodic case. Since the Green’s function tensorizes, it is enough to find
examples for d = 1.

Example 2 There are functions in L∞(Rd) not belonging to Z . Define k(x) =
1[−1,1](x), then using the Green’s function one can show ‖k‖BR

≥ G(1,0) > 0.

Example 3 The space Z contains unbounded functions, which are not in B. Define

for α > 0, kα(x) = |x|α . Now one can show ‖t 1
4 ∂x(etA kα)‖∞ = t

α
4 ‖∂x(eA kα)‖∞.

Hence, ‖kα‖BR
→ 0 for R → 0 but ‖kα‖B = ∞.

Example 4 Consider the case d = 1, then k(x) = log(|x|) is (pointwise, away from
the pole) a stationary solution for problem (9). See Remark 14 or [16] for more ex-
amples like the periodic log(sin(x)). Nevertheless, this function is neither a weak nor
a mild solution, as ∇k is not locally square summable.

Now it is possible to show that k ∈ B but k /∈ Z , as ‖k‖B is finite, but ‖k‖BR
is

independent of R and does not converge to 0. For this one needs to verify by using

the properties of the Greens function that ‖t 1
4 (∂x etA k)‖∞ = ‖∂x eA k‖∞.

3.4 Remark on Non-uniqueness in Dimension 4

Example 4 becomes more interesting if one turns to higher dimension. Let k(x) =
αd log(|x|) for x ∈ Rd with αd ∈ R. As in Example 4, k ∈ B, but k /∈Z . The function
k is not a weak solution for d = 2 and all αd �= 0. But as the weak derivative ∇k ∈
L2

loc in dimension d ≥ 3, it is straightforward to check explicitly that both the weak
formulation (7) and the mild formulation are satisfied with αd = 2 − d .

A special case is dimension d = 4, where k is a stationary weak solution for any
αd ∈ R. But in that case the B-norm of k can be made arbitrarily small with αd → 0,
and thus by Theorem 1 and results in Sect. 3.6 below there is also a smooth mild
solution starting at k.

In conclusion this example shows the non-uniqueness and lack of smoothness of
mild solutions, at least in dimension d = 4. Nevertheless there is no contradiction
with our Theorem 1 in the section below, since this states uniqueness in X but k /∈X ,
if considered as a function of time.

3.5 The Fixed Point Argument

Define the map

V(h, k)(t) = −
∫ t

0
� e(t−s)A ∇h(s) · ∇k(s) ds =

∫ t

0
e(t−s)A B

(
h(s), k(s)

)
ds.
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Here we use the slightly modified concept of a mild solution. The main difference is
that in contrast to Definition 2, we do not assume continuity in t . This needs to be
established in an additional step.

Definition 3 We say that h ∈ X solves (9) with initial condition h0 ∈ B, if for all
t > 0

h(t) = etA h0 + V(h,h)(t). (12)

We call h ∈XR a local mild solution, if (12) holds only on t ∈ [0,R4] for some R > 0.

The following lemma is crucial for the proof of uniqueness and existence. It veri-
fies that the nonlinear part is locally Lipschitz continuous both in X and XR .

Lemma 6 The map V is bi-linear and continuous from X ×X to X and from XR ×
XR to XR , for all R > 0 such that

‖V(h, k)‖X ≤ c4‖k‖X ‖h‖X and ‖V(h, k)‖XR
≤ c4‖k‖XR

‖h‖XR
.

Idea of proof The bilinearity is obvious by the bilinearity of B . For the boundedness
one uses ‖∇h ·∇k‖∞ ≤ t−1/2‖k‖X ‖h‖X together with an L∞ bound on � etA given
by an explicit calculation in terms of the Greens-function. For more details see [17,
Lemma 4.2]. �

Using the previous lemma, we can now state and prove our main result [17, The-
orem 4.3] on global existence and local existence of unique solutions. Recall that
‖h0‖BR

→ 0 is true for R → 0 for all h0 ∈ Z .

Theorem 1 Consider any d ≥ 1 and fix 0 < δ < 1/4c4, with c4 from Lemma 6.
If ‖h0‖B ≤ δ, then there exists a unique (global) solution in X of (9).
Moreover, if ‖h0‖BR

≤ δ, then there is a unique local solution in XR of (9) on
[0,R4].

Finally, if h0 is periodic and satisfies one of the bounds above, then the solution is
also periodic.

Proof The proof is based on a standard fixed point iteration argument. Choose K

such that

1 − √
1 − 4c4δ ≤ 2c4K < 1.

Define the iteration

H0 = 0, Hn+1 = etA h0 + V(Hn,Hn),

then ‖H1‖X = ‖h0‖B ≤ δ. Now by Lemma 6 ‖Hn+1‖X ≤ δ + c4‖Hn‖2
X . Thus by

induction and the choice of δ and K , it follows that ‖Hn‖X ≤ K for all n. Then

‖Hn+1 − Hn‖X = ‖B(Hn,Hn) −B(Hn−1,Hn−1)‖X ≤ 2c4K‖Hn − Hn−1‖X
and so (Hn)n∈N is convergent in X to a fixed point of (12).
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The same proof works for local spaces, since all constants do not depend on R.
The final statement of periodicity follows by translation invariance of (9) and unique-
ness. �

Remark 7 We remark without proof, that the solution of Theorem 1 is a mild solution
in the sense of Definition 2 in the space B. But the uniqueness is only verified in X
or XR .

3.6 Remark on Smoothness of Solutions

In this section we state without proof the result that solutions granted by Theorem 1
are smooth in space and time for t > 0. One approach is to follow the same methods
of [46] and use for m ≥ 1 the space

Xm =
{
k : Rd → R : ‖k‖Xm := max

0≤j≤m
‖k‖X ,j < ∞

}
,

as well as the corresponding local version Xm
R . Here the norm is

‖k‖X ,m := sup
t>0

{
t

m+1
4

∑
|α|=m+1

‖Dαk‖∞
}
,

and ‖ · ‖XR,m is the corresponding local version, with α = (α1, . . . , αd), Dα =
∂

α1
x1 . . . ∂

αd
xd

, and |α| = α1 + · · · + αd .
In order to go to higher regularity we repeat inductively the fixed-point argument

in the space Xm or Xm
R to obtain the following proposition.

Proposition 4 (Proposition 6.3 of [17]) There exists δ > 0 such that if ‖h0‖B < δ (or
‖h0‖BR

< δ), then the solution to (9) granted by Theorem 1 is in Xm (or Xm
R ) for all

m ≥ 1.

An immediate corollary is the following result on smoothness in space. Smooth-
ness in time then follows from the PDE by a standard bootstrapping argument.

Corollary 1 Let h be a solution of (9) in XR , with 0 < R ≤ ∞. Then h(t) ∈ C∞
b (Rd)

for all t ∈ (0,R).

Remark 8 A more careful analysis would show that the solutions are analytic in
space. We point out that Koch & Lamm [63] have a more elegant proof of analyt-
icity (in a different context). An advantage of the method used here is to provide the
behavior at t = 0 of solutions through the spaces Xm and Xm

R .

3.7 Local Existence for the Stochastic Problem

In this section we outline the basic idea of the proof of local existence for the stochas-
tic PDE. Based on Sect. 2.4 we consider (8) instead of (9). The two additional terms
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are on one hand a linear term B(Z,v) and a forcing term B(Z,Z). Both are ran-
dom due to the stochastic convolution Z, but for any fixed realization they are easily
included in the deterministic fixed-point argument of Theorem 1, provided Z is suf-
ficiently regular.

For instance, in the case of bounded intervals (i.e. d = 1) with periodic boundary
conditions and space–time white noise, we have that the stochastic convolution Z and
its derivative ∂xZ are continuous in both space and time. Compare to Proposition 1
for the spatial regularity and Remark 5 for time regularity.

Thus we can conclude that almost surely ‖Z‖XR
→ 0 for R → 0. Hence the equa-

tion can be uniquely solved in XR , for a random R > 0.
An interesting question appears in the case of periodic boundary conditions and

d = 2, since for space-time white noise the convolution Z just fails to be differen-
tiable in space (see Proposition 3), and thus all results of this section are not applica-
ble. In the next section we give details how to attack this problem.

Let us finally remark that for d = 2 the stochastic convolution Z will be differen-
tiable if we consider slightly more regular noise. In that case all the machinery of this
section again applies.

4 Rough Noise—Not Enough Regularity

In the previous section we discussed how far we can get with the transformation of
(1) to a random PDE and using deterministic methods. In this section we address
the problem of proving the existence of local solutions for the stochastic problem (1)
in dimension d = 2 where the regularity of solutions is too weak for the non-linear
term, in order to apply the deterministic tools of the previous section. Fix for the
whole section for simplicity of presentation L = 2π .

We follow an approach similar to the one used in [29] for a similar singular two-
dimensional problem with space-time white noise. Recently, there is a high interest
in the analysis of non-linear PDEs that, like the one presented here, are forced by
rough noise so that the non-linear term in principle is not well-defined. The meaning
of the non-linearity is then recovered through probability. We refer to [50, 52]. Two
recent papers [48, 51] have proposed general and powerful methods that would both
apply to our equation (1) as well as to more difficult problems, where for instance the
re-normalized infinite constant shows up in the equation. See also [45, 53, 116].

The method we use here, based on Fourier expansion, works very well for our
problem (1) and we believe it is, at least for this problem, neat and simple. It illustrates
already the key problems one is facing.

The idea is to decompose the solution in a rough part having the low regularity
dictated by the forcing and a remainder, slightly smoother. The non-linearity for the
rough term is then defined as the limit of cut-offs via spectral Galerkin methods,
thanks to the underlying Gaussian nature of the processes involved. This, roughly
speaking, corresponds to a re-normalization of the non-linearity, but here without any
additional term, due to the fact that the Laplace in front of the gradient squared kills an
infinite renormalization-constant, that would appear, as in KPZ [50], to compensate
the divergence in the non-linearity.
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The method works even for rougher noise at the price of a lower level of regularity.
For even rougher noise the remainder fails to be regular enough, and then we need an
additional term in the expansion of the solution, which would then lead to the method
proposed in [48]. Here many terms are added in the expansion, and we discuss briefly
on this in Sect. 4.4. Also the theory of regularity structures [51] uses a kind of Taylor
expansion in terms of singular, noise dependent, terms and more regular parts, but
this is on a level of greater generality.

4.1 Setting and Main Result

Here we use again the standard transformation h = Z + v (cf. Sect. 2.4). We already
saw that the stochastic convolution Z is continuous in space and time, but it fails to
have a derivative.

Since it turns out that v is regular enough, the mixed product B(v,Z) is well
defined (cf. Lemma 2), by standard Sobolev theory, and we do not need to define this
using the paracontrolled theory of [48], which allows to define the product for less
regular functions. In the abstract theory of regularity structures these products are
always defined.

The problems here originate only from the “squared distribution” |∇Z|2 in
B(Z,Z). Once this term is properly defined as a limit of spectral approximations,
for instance, we can work out a fixed point argument similar to [43] (see also [16] or
Sect. 3).

In conclusion a mild solution h of (1) is in this section a random process such that
v = h − Z is a solution of

v(t) = S(t)h0 +
∫ t

0
S(t −s)B(v, v) ds+

∫ t

0
S(t −s)

(
B̃(Z,Z)+2B(Z,v)

)
ds, (13)

where B̃(Z,Z) is the suitably modified product.
As in Sect. 3 we introduce time-weighted spaces, but now we use a Hilbert-space

setting, in order to say more about norms of Fourier-series expansions of B(Z,Z),
which is not that easy in the space X . Similar arguments are also possible in a Besov-
space setting, but for simplicity of presentation, we restrict ourselves to the Hilbert-
space setting only.

Given ρ > 0, ε > 0 and T > 0, define

‖u‖ε,T := sup
t≤T

t
ε
4 ‖u(t)‖H 1+ε .

We will find a solution of (13) by means of a fixed point argument for suitable ρ and
T in the space

X (ε, ρ,T ) := {
v ∈ C

([0, T ];L2) : ‖v‖ε,T ≤ ρ
}
.

Theorem 2 Let h0 ∈ H1 and ε ∈ (0, 1
2 ). There exist a stopping time τh0 and a

solution h of the mild formulation (cf. (13)) defined on [0, τh0), such that h ∈
C([0, τh0);L2) and h − Z ∈ C((0, τh0);H1+ε). Moreover, P[τh0 > 0] = 1.
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We will not give a detailed proof of this theorem, as it is in principle very similar
to the proof in Sect. 3.5). Again the additional terms do not cause problems, provided
they are sufficiently regular. For details see [18, Theorem 2.10]. For the mixed term
we use Lemma 2 and the square of the Gaussian is defined in the next section.

Note that solutions are unique up to the minimum of both their stopping times in
the space X (ε, ρ,T ). Moreover, by standard methods one can continue uniquely the
solution as continuous H1+ε -valued solutions, until they blow up.

Remark 9 With some effort one can show that v is as regular as
∫ t

0 S(t −
s)B̃(Z,Z)ds. Here it is sufficiently regular to proceed with the fixed-point argument.
If this is not the case, then additional expansions will be necessary (see Sect. 4.4).

If this integral fails to be more regular than Z alone, which might be the case for
very rough noise or higher dimension, then there seems to be no way this method or
any other like [48] or even regularity structures will work.

4.2 Additional Regularity for Powers of Gaussian

Here we discuss the key point in all the theory, which is the definition of the non-
linearity evaluated at Gaussian random variables that are not regular enough. The
stochastic convolution Z can be expanded in the complex Fourier basis (see (6)),

Z(t) =
∑
k∈Z2

�

zk(t)ek, zk(t) =
∫ t

0
e−|k|4(t−s) dβk(s),

where βk = 〈W(t), ek〉, β−k = β̄k , and (βk)k∈Z2+ is a sequence of independent
complex-valued standard Brownian motions.

We saw in Lemma 3 that Z is not sufficiently regular to define the non-linear term.
But it turns out that, suitably defined, the term B(Z,Z) does make sense.

If u = ∑
k∈Z2 ukek and v = ∑

k∈Z2 vkek are real valued, the non-linear term can
be formally written in terms of the Fourier coefficients as

B(u, v) =
∑
k∈Z2

�

|k|2
( ∑

m+n=k

m · n umvn

)
ek.

Consider the stochastic convolution Z and set for every k ∈ Z2,

Jk(t) =
∑

m+n=k

m · n zm(t)zn(t). (14)

Formally, B(Z,Z) = ∑
k |k|2Jkek , but Lemma 3 immediately tells us that

J0(t) = −‖∇Z(t)‖2
L2 = ∞ almost surely.

Likewise, we obtain, that the series in (14) is not absolutely convergent.
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Following [29], we resum the terms Jk(t) in a suitable way, in order to rely on
cancellations, based on the fact that the zm are centered Gaussians. The term J0(t)

should at first sight be the most problematic, since there is no hope to exploit any
cancellation. But it is constant in space and thus canceled by the Laplacian.

Given N ≥ 1, let HN be the linear sub-space of L2 spanned by (ek)0<|k|≤N . Let
πN be the projection of L2 onto HN and define

BN(u, v) = B(πNu,πNv).

We define the operator B̃(Z,Z) as the limit of the sequence (BN(Z,Z))N≥1.

Lemma 7 The approximation (BN(Z,Z))N≥1 is, for every γ > 0, a Cauchy se-
quence in the space L2(Ω;H−2−γ ). Thus the limit B̃(Z,Z) is almost-surely well-
defined as an element of H−2−γ .

As the cancellation property used in this proof is essential for the whole theory,
we repeat the proof of [18, Lemma 3.4].

Proof Let JN
k be the term analogous to Jk for the projection πNZ. If N ≤ N ′, then

E
[|JN

k (t) − JN ′
k (t)|2] =

N↔N ′∑
m1+n1=k

N↔N ′∑
m2+n2=k

m1 · n1 m2 · n2E[zm1zn1 z̄m2 z̄n2 ],

where by the symbol N ↔ N ′ in the sum over m,n we mean that the sum is extended
only over those indices m,n that satisfy N < |m| ∨ |n| ≤ N ′.

The sequence (zm)m∈Z2+ is a family of independent centered Gaussian random
variables. Moreover z̄m = z−m. Using that odd moments of Gaussians are zero we
can show that

E[zm1zn1 z̄m2 z̄n2 ] �= 0

{
only if m1 = m2 and n1 = n2,

or if m1 = n2 and m2 = n1.

Therefore,

E
[|JN

k (t) − JN ′
k (t)|2] = 2

N↔N ′∑
m+n=k

(m · n)2
E

[|zm|2|zn|2
]

≤ c

N↔N ′∑
m+n=k

(m · n)2

|m|4|n|4
(
1 − e−2|m|4t)(1 − e−2|n|4t)

≤ c

N↔N ′∑
m+n=k

1

|m|2|n|2 .
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The last series above can be estimated explicitly (see for example [19, Lemma 2.3]
for details). Indeed since |m| ∨ |n| ≥ N ,

N↔N ′∑
m+n=k

1

|m|2|n|2 ≤ 2

Nγ

N↔N ′∑
m+n=k|n|≤|m|

1

|m|2−γ |n|2 ≤ 2

Nγ

N↔N ′∑
m+n=k

1

|m|2−γ |n|2 ≤ c

Nγ |k|2−γ
.

In conclusion,

E
[‖B̃N (z, z) − B̃N ′(z, z)‖2

H−2−γ

] =
∑
k∈Z2

�

|k|−2γ
E

[|JN
k − JN ′

k |2] ≤ c

Nγ

∑
k∈Z2

�

1

|k|2+γ
,

and the term on the right hand side converges to zero as N,N ′ → ∞. �

We shall need higher moments of B̃(z, z) for our considerations on the non-linear
problem. We shall derive the claim from hyper-contractivity of Gaussian measures
[79, 101]. For Gaussian random variables it is well-known that all their moments are
bounded by the second. By hyper-contractivity (Nelsons theorem) the same state-
ments extends to polynomials of Gaussian random variables.

Proposition 5 Given γ > 0 and p > 1,

sup
t>0

E
[∥∥B̃

(
Z(t),Z(t)

)∥∥p

H−2−γ

]
< ∞.

From this result we obtain that B̃(Z,Z) ∈ Lp(0, T ,H−2−γ ) for all p > 1. Higher
regularity in time like continuity is possible, but not necessary for the fixed point
argument.

Proof For the second moment we can proceed as in the previous lemma,

E
[|JN

k |2] =
∑

m+n=k|m|,|n|≤N

(m · n)2
E

[|zm|2|zn|2
] ≤ c

∑
m+n=k

1

|m|2|n|2 ≤ c

|k|2 log(1 + |k|).

And thus

E
[∥∥BN

(
z(t), z(t)

)∥∥2
H−2−γ

] ≤
∑

k

|k|−2γ
E

[|JN
k |2] ≤ c

∑
k

log(1 + |k|)
|k|2+2γ

< ∞.

To prove that all higher moments are finite, as outlined before we can rely on Theo-
rem I.22 of [101]. We skip the proof here. �

4.3 Other Regularizations

Here we consider one regularizing method different from the spectral Galerkin
method used to define B̃(Z,Z). In principle all approximations may lead to a differ-
ent renormalization B̃ , but it turns out that in numerous cases they are all the same,
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and thus the solution of the renormalized problem (13) is always the same. For an
abstract result of different regularizations see [18, Thm. 2.3 & 2.4].

Here we only give one example of such regularizations using a convolution op-
erator. Consider a regularizing operator ΦN acting on the process Z, or equivalently
on W , as the convolution commutes with the semigroup. In the previous section we
discussed the case ΦN = πN of spectral Galerkin projections.

Example 5 (Convolution Operator) Given a non-negative smooth function q with
support contained in a small neighborhood of the origin and such that

∫
q(x) dx = 1,

let qN be the 2π -periodic extension on the flat torus [0,2π]2 of z �→ q(Nz). Define

ΦNf (x) =
∫

[0,2π]2
N2qN(x − y)f (y) dy.

The operators ΦN are self-adjoint and diagonal in the Fourier basis. Denote by φN
k

the eigenvalues of ΦN . These are (up to constant) given by the Fourier coefficients of
z �→ N2q(Nz).

We need some decay condition, in order for ΦN to have a regularizing effect that is
strong enough. Here is sufficient that |φN

k | � |k|−η for some η > 0, which is assured
by q ∈ Hη for some η > 0.

In order to have the regularization disappear in the limit, we need φN
k → 1 as

N → ∞. This can be checked using the fact that q is supported around 0,

qN
k = N2

∫
[−π,π]2

qN(x)e−k(x) dx

=
∫

[−π,π]2
q(z)e−k/N (z) dz −→ 1 for N → ∞.

4.4 Rougher Noise

As it is apparent by the previous sections, space–time white noise is the borderline
case between the standard theory for mild solutions in Sect. 3.7 and the additional
work presented in Theorem 2.

Nevertheless, it is possible to consider rougher noise than space-time. In view of
the computations needed to define B̃(Z,Z) (Lemma 7) it is reasonable to consider a
simplified case, namely when the covariance operator of the driving Wiener process
is diagonal in the Fourier basis. This is the somewhat opposite case of Example 5,
when we consider kernels q given by a distribution instead of a function.

Consider a bounded linear operator Φ on L2 and assume for the rest of this section
the following properties,

– Φ ek = φkek for every k ∈ Z2
� ,

– there is β > 0 such that |φk|2 ≤ c|k|β for every k ∈ Z2
� .

The value β = 0 corresponds to noise probably as bad as space-time white noise.
Moreover, the definition of B̃(Z,Z) imposes a structural restriction that limits the
range of possible values of β to β < 1. The main problem of β > 1 is that E[|Jk(t)|2]
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might no longer converge, and our simple renormalization is not good enough to
handle this case. Additional renormalization seems to be necessary.

Consider now the SPDE with rougher noise

dh = (
Ah + B(h,h)

)
dt + dΦW, (15)

and the OU-process

Z(t) =
∫ t

0
S(t − s)ΦdW(s). (16)

The same ideas presented earlier in Sect. 4, when slightly modified to take into
account the parameter β , lead to the following result. See [18, Theorem 2.9].

Theorem 3 Assume β ∈ (0, 2
3 ) and let h0 ∈H1 and ε ∈ (

β
2 , (1 − β) ∧ 1

2 ).
Given the covariance operator Φ , there exist a stopping time τh0 and a solution

h of (15) understood as h = v + Z with Z from (16), where v satisfies the mild for-
mulation (13) on [0, τh0). Moreover, h ∈ C([0, τh0);L2), h − z ∈ C((0, τh0);H1+ε),
and P[τh0 > 0] = 1. Finally, two such solutions are unique up to the minimum of their
stopping time.

It is not obvious, but the restriction β < 2
3 appears due to the term B(v,Z) in the

mild formulation (13). When the noise is too rough, the auxiliary function v is not
enough regular to ensure that the product B(v,Z) is well-defined. We could either
use the paracontrolled approach in [48] in order to define the product of two not
sufficiently regular functions, or immediately go to higher terms in the expansions.

To overcome the difficulty for β ∈ [ 2
3 ,1) in the decomposition of h, namely h =

u + ζ + Z, where

ζ(t) =
∫ t

0
S(t − s)B̃

(
Z(s),Z(s)

)
ds, (17)

and from (13) we see that u = v − ζ is a solution of the mild formulation

u(t) = S(t)h0 +
∫ t

0
S(t −s)

[
B(u,u)+2B(u,Z)+2B(u, ζ )+2B̃(ζ,Z)+B̃(ζ, ζ )

]
ds.

(18)
We now hope that u is sufficiently regular that B(u,Z) and also B(u, ζ ) are defined.

Moreover, we need to suitably define the products B̃(ζ, z) and B(ζ, ζ ). We can
proceed as we did for B̃(z, z) in Sect. 4.2, by exploiting the cancellations in the
expectations of these processes. Even if we would have enough regularity, in order
to define the products directly, these Gaussian cancellations yield better regularity of
the products.

We are able then to state the following result from [18, Theorem 2.10].

Theorem 4 Assume β ∈ (0,1) and let h0 ∈ H1 and ε ∈ (
β
2 , 1

2 ). Given the covariance
operator Φ , there exist a stopping time τh0 and a solution h of (15) understood as
h = u+ζ +Z, where Z is given by (16), ζ by (17) and u = h−z−ζ satisfies the mild
formulation (18) on [0, τh0). Moreover, h ∈ C([0, τh0);L2), u ∈ C((0, τh0);H1+ε)
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and P[τh0 > 0] = 1. Finally, two such solutions are unique up to the minimum of
their stopping time.

In principle, if a suitable regularization of B̃ would allow for even less regular
noise with higher values of β , we could go to even higher terms in the expansion.

5 Global Existence

In this section we first focus on the one-dimensional case on the interval [0,L], as
only here we have useful uniform global a-priori estimates for the spectral Galerkin-
approximation. See (3). We comment on the case d = 2 in detail later in this section.

There are two standard ways of treating the global existence of solutions. The
first one relies on the fixed point argument, which was explained in Sect. 3. Here the
result is that small initial data yields global existence for all times. But in general one
can only show that local solutions are smooth and continue until a possible blow up,
which we discuss later in Sect. 6.

The other approach relies on an approximation like the spectral Galerkin method,
for example, and uses the following steps:

– Energy type a-priori estimates for the approximation, like (3) for instance.
– Compactness of the approximating sequence (by using uniform bounds) yields a

convergent subsequence.
– Passage to the limit in the approximation. The key problem here is usually the

continuity of the nonlinear term in the weak topology provided by the compactness
result.

This program was carried out for many models in numerous publications. For
our model and d = 1 it was implemented by [103], and for the stochastically per-
turbed equation in [9, 11, 13]. See also [71, 88]. In all cases global solutions are only
bounded uniformly in L2, which is not enough to ensure uniqueness provided for
instance by the fixed-point argument.

A serious difficulty arises for SPDEs, if one only repeats path-wise the determin-
istic result, as the choice of the subsequence will depend on the realization under
consideration, and thus in general the limit will no longer be a measurable random
variable. This only works with stochastic equations that admit a strong (in terms of
probability) solution. On the other hand we may consider a weaker (again in terms
of probability) notion of solution, characterized only by the law. In this case for the
approximations we consider compactness of the corresponding probability measures
(Prokhorov’s theorem), to obtain a subsequence independent of the realizations. The
price one needs to pay is that the convergence is too weak to pass to the limit in the
nonlinearity. But one can rely on the Skorokhod representation theorem in order to
obtain, on a different probability space and with different input data (with the same
distributions though), an almost surely convergent subsequence, which is sufficient
for the passage to the limit. This procedure only yields a so called Martingale solu-
tion. See for instance [32, 38].

Here we intend to solve the equation for all initial conditions on the same proba-
bility space and follow the results of [9] that use the method developed by Flandoli
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& Romito [40] and [42] in order to establish the existence of weak solutions hav-
ing the Markov property. For the precise formulation of the concept of solution see
Definitions 5 and 6 below.

The method is essentially based on showing a multi-valued version of the Markov
property for sets of all possible solutions and then applying a clever selection princi-
ple (Theorem 5). The original idea is due to Krylov [64] (see also Stroock & Varadhan
[104, Chap. 12]).

A key point in this analysis is the definition of weak martingale solutions. The
selection procedure needs to handle solutions which incorporate all the necessary
bounds on the solution of the SPDE. These bounds must be compatible with the
underlying Markov structure.

5.1 Setting

Let Ω = C([0,∞);H−4) and let B be the σ -algebra of Borel subsets of Ω . Let
ξ : [0,∞) × Ω →H−4 be the canonical process on Ω , defined as ξ(t,ω) = ω(t).

For each t ≥ 0, let Bt = σ [ξ(s) : 0 ≤ s ≤ t] be the σ -field of events up to time
t and Bt = σ [ξ(s) : s ≥ t] be the σ -field of events after time t . The σ -field Bt can
be seen as the Borel σ -field of Ωt = C([0, t];H−4) and, similarly, Bt as the Borel
σ -field of Ωt = C([t,∞];H−4). Notice that both Ωt and Ωt can be seen as Borel
subsets of Ω (by restriction to corresponding sub-intervals). Define finally the for-
ward shift Φt : Ω → Ωt , defined as

Φt(ω)(s) = ω(s − t), s ≥ t.

Given a probability measure P on (Ω,B) and t > 0, we shall denote by ω �→
P |ωBt

: Ω → Ωt a regular conditional probability distribution of P given Bt . Notice
that Ω is a Polish space and Bt is countably generated, so a regular conditional prob-
ability distribution does exist and is unique, up to P -null sets.

In particular, P |ωBt
[ω′ : ξ(t,ω′) = ω(t)] = 1 and, if A ∈ Bt and B ∈ Bt , then

P [A ∩ B] =
∫

A

P |ωBt
[B]P(dω).

One can see the probability measures (P |ωBt
)ω∈Ω as measures on Ω such that

P |ωBt
[ω′ ∈ Ω : ω′(s) = ω(s), for all s ∈ [0, t]] = 1 for all ω in a Bt -measurable P -

full set. We finally define the reconstruction of probability measures (details on this
can be found in Stroock & Varadhan [104, Chap. 6]).

Definition 4 Given a probability measure P on (Ω,B), t > 0 and a Bt -measurable
map Q : Ω → Pr(Ωt ) such that Qω[ξt = ω(t)] = 1 for all ω ∈ Ω , P ⊗t Q is the
unique probability measure on (Ω,B) such that

1. P ⊗t Q agrees with P on Bt ,
2. (Qω)ω∈Ω is a regular conditional probability distribution of P ⊗t Q, given Bt .

For shorthand notation denote by Pr(X) the set of all probability measures on the
space X equipped with the Borel-σ -algebra.
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5.2 The Martingale Problem

We state the weak formulation of (1) in terms of measures.

Definition 5 (Weak Martingale Solution) Given μ0 ∈ Pr(L2), a probability measure
P on (Ω,B) is a solution, starting at μ0, to the martingale problem associated to
Eq. (1) if

[W1] P [L2
loc([0,∞);H1)] = 1,

[W2] for every ϕ ∈D∞, the process (M
ϕ
t ,Bt , P )t≥0, defined P -a.s. on (Ω,B) as

M
ϕ
t = 〈

ξ(t) − ξ(0), ϕ
〉
L2 +

∫ t

0

〈
ξ(s), ∂4

xϕ
〉
L2 ds +

∫ t

0

〈(
∂xξ(s)

)2
, ∂2

xϕ
〉
L2 ds

is a Brownian motion with variance t‖ϕ‖2
L2 ,

[W3] the marginal at time 0 of P is μ0.

Remark 10 It is not difficult to prove that the definition of weak martingale solution
given above coincides with the usual definition given in terms of existence of an
underlying probability space and a Wiener process. This equivalence is proved in
Flandoli [38] for the Navier-Stokes equations and one can proceed similarly in this
case, but we do not focus on this here.

Given all the M
ϕ
t one can rely on the Kolmogorov extension theorem, in order to

show that there is a Wiener-process W such that M
ϕ
t = 〈W(t),ϕ〉, but here we can

proceed in a simpler way, and define W directly. Define, for every k ∈ N, the process
βk(t) = M

ek
t . Under any weak martingale solution P , the (βk)k∈N are a sequence

of independent one-dimensional standard Brownian motions. By definition, one only
needs to show the independence, which is also immediate. Let us only show that they
are uncorrelated and neglect all other technical difficulties. By Definition 5

2E
[
βk(t)β�(t)

] = 2E
[
M

ek
t M

e�
t

] = E
[
M

ek+e�
t

]2 −E
[
M

ek
t

]2 −E
[
M

e�
t

]2 = 0.

Define now the Wiener process W by (5) and the Ornstein-Uhlenbeck process Z

by (6), both as random variables on Ω . Recall that the process Z can be defined path-
wise, without relying on Itō-calculus. In the following lemma we summarize all the
regularity result for Z that we shall use for our result here. See also Sect. 2.1, where
these properties are partly derived.

Lemma 8 Given a weak martingale solution P , let Z be the corresponding OU-
process defined in (6). Then

1. For every p ≥ 1 and T > 0, Z ∈ Lp(Ω × (0, T );W1,4). Moreover there is λ > 0,

sup
T >0

1

T
E

P

[∫ T

0
exp

{
λ|Z(t)|2W1,4

}
dt

]
< ∞.

2. For every p ≥ 1 and γ ∈ [0, 3
2 ), Z ∈ Lp(Ω;L∞

loc([0,∞),Hγ )).
3. Z is P —a.s. weakly continuous with values in Hγ , for every γ ∈ [0, 3

2 ).
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Note that we carefully need to check that these properties are really true for any
weak martingale solution P . We are not allowed to use versions of the process Z.
Thus continuity in time is not a property we can rely on.

Definition 6 (Energy Martingale Solution) Given μ0 ∈ Pr(L2), a probability mea-
sure P on (Ω,B) is an energy martingale solution to Eq. (1) starting at μ0 if

[E1] P is a weak martingale solution starting at μ0,
[E2] P [V ∈ L∞

loc([0,∞);L2) ∩ L2
loc([0,∞);H2)] = 1,

[E3] there is a set TP ⊂ (0,∞) of null Lebesgue measure such that

for all s /∈ TP and all t ≥ s , P
[
Et (V ,Z) ≤ Es(V ,Z)

] = 1,

where we used the standard transformation V (t,ω) = ξ(t,ω) − Z(t,ω), for t ≥ 0,
and the energy functional E is defined as

Et (v, z) = 1

2
‖v(t)‖2

L2 +
∫ t

0

(‖v‖2
H2 − 〈

2∂xv · ∂xz + (∂xz)
2, ∂2

x v
〉
L2

)
ds

for v ∈ L∞([0, t];L2) ∩ L2([0, t];H2) and z ∈ L4([0, t];W1,4) ∩ L∞([0, t];H1).

Remark 11 (The Equation for V ) Let P be an energy martingale solution, then it is
easy to see (cf. Sect. 2.4) that V is a weak solution to the equation,

∂tV + ∂4
xV = −∂2

x

[
(∂xV + ∂xZ)2], V (0) = ξ(0).

Remark 12 (Finiteness of the Energy) Given an energy martingale solution P , then
the energy Et is almost surely finite under P . Indeed, by [E2], it follows that V (t) is
P -a.s. weakly continuous in L2 (see for example Lemma 3.1.4 of Temam [109]), and
so the function t �→ ‖V (t)‖2

L2 is defined point-wise in the energy estimate. Similarly,
the other terms are also P -a.s. finite by [E2] and the regularity properties of Z under P .

Remark 13 We remark that property [E3] is quite strong and that the energy inequality
is an intrinsic regularity property of the solution to the original problem (1), and does
not depend on the splitting V + Z. Similar estimates follow from [E3] for any other
transformation ξ = V + Zα , where Zα(t) solves dZα = −[∂4

xZ − αZα]dt + dW .
A similar result was discussed in [90] for the Navier-Stokes equations.

5.3 Existence of Markov Solutions

This section is devoted to the existence of Markov solutions for Eq. (1). To such aim,
define for each f ∈ L2,

C(f ) = {P : P is an energy martingale solution starting at δf }.

We state the main theorem of this section on existence of global solutions.
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Theorem 5 There exists a family (Pf )f ∈L2 of probability measures on (Ω,B) such

that for each f ∈ L2, Pf is an energy martingale solution with initial distribution δf ,
and the a.s. Markov property holds: there is a set TP ⊂ (0,∞) with null Lebesgue
measure such that for all s /∈ TP , all t ≥ s and all bounded measurable φ : L2 → R,

E
P
[
φ(ξt )|Bt

] = E
Pξs

[
φ(ξt−s)

]
.

Once the existence of at least one Markov family of solutions is ensured, the anal-
ysis of such solutions goes further. Indeed, the selection principle provides a family of
solutions whose dependence with respect to the initial conditions is just measurabil-
ity. By slightly restricting the set of initial condition, this dependence can be improved
to continuity in the total variation norm (or strong Feller in terms of the correspond-
ing transition semigroup). We do not study this in detail here, but this is crucial, if we
want to study long term dynamics in terms of invariant measures.

Idea of Proof We follow [9, Theorem 3.1]. It is sufficient to show that the family
(C(x))x∈L2 defined above is an almost sure pre-Markov family. We recall now the
various properties of an a.s. pre-Markov family, which we need to verify in order to
prove the theorem (see also Definition 2.5 of Flandoli & Romito [42]).

1. Each C(x) is non-empty, compact and convex, and the map x → C(x) is measur-
able with respect to the Borel σ -fields of the space of compact subsets of Pr(Ω)

(endowed with the Hausdorff measure).
2. For each x ∈ L2 and all P ∈ C(x), P [C([0,∞);L2

weak)] = 1, where L2
weak is the

space L2 with the weak topology.
3. For each x ∈ L2 and P ∈ C(x) there is a set T ⊂ (0,∞) with null Lebesgue mea-

sure, such that for all t /∈ T the following properties hold:
(a) (disintegration) there exists N ∈ Bt with P(N) = 0 such that for all ω /∈ N

ω(t) ∈ L2 and P |ωBt
∈ ΦtC

(
ω(t)

);
(b) (reconstruction) for each Bt -measurable map ω �→ Qω : Ω → Pr(Ωt ) such

that there is N ∈ Bt with P(N) = 0 and for all ω /∈ N

ω(t) ∈ L2 and Qω ∈ ΦtC
(
ω(t)

)
,

we have that P ⊗t Q ∈ C(x).

The validity of these properties is verified [9]. Property (1) is verified by spectral
Galerkin methods and compactness of probability measures (see [11]). Property (2)
is a weak regularity property, while the main work is in property (3). From the al-
most sure pre-Markov family using the selection principle of Krylov [64] (see also
Stroock & Varadhan [104, Chap. 12]) the existence of an almost sure Markov process
follows. �

5.4 Remarks on Invariant Measures

Let us discuss the long time behavior of the model. We are able to show that any
Markov solution has a unique invariant measure whose support covers the whole
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state space. In principle the existence of stationary states has been already proved by
Blömker and Hairer [13] using spectral Galerkin approximation. But this is not useful
in this framework, as we have a transition semigroup that depends on the generic se-
lection under analysis, which is in general not obtained by a suitable limit of Galerkin
approximations.

We finally remark that, even though our results show that every Markov solution
is strong Feller and converges to its own invariant measure, well posedness is still an
open problem for this model and these result essentially do not improve our knowl-
edge on the problem. Even the invariant measures could be different, as they depend
from different Markov semigroups.

Let us remark that provided one can show that all possible invariant measures for
all Markov-selections are the same, then the energy martingale solution is unique, see
[89]. See also [37, 102] for some results loosely in the same direction.

5.5 A Comparison with Previous Results on the Markov Property

There are several mathematical interests in this model, in comparison with the theory
developed in Flandoli & Romito [40, 42] for the Navier-Stokes equations. Essentially,
in this model we have been able to find the natural space for the Markov dynamics,
thus showing the existence of the (unique) invariant measure. The corresponding re-
sult for Markov selections of the Navier–Stokes equations with noise can be found in
[89], see also [92, 95].

Another challenge of this model has concerned the analysis of the energy inequal-
ity. Here the physics of the model requires a noise white in time and space, while the
analysis developed in the above cited papers has been based on a trace-class noise
with quite regular trajectories.

Finally, we remark that there is a different approach to handle the existence of
solutions with the Markov property, based on spectral Galerkin methods, which has
been developed by Da Prato and Debussche [30] (see also Debussche & Odasso [34])
for the Navier-Stokes equations. These techniques are not yet applied for the model
analyzed here.

5.6 Remarks About 2D

In order to complete the same program for the (physically relevant) two-dimensional
case d = 2, which is still open, there are several problems that need to be faced.

– When dealing with space–time white noise it turns out that the expected smooth-
ness of the solution is not enough to define the non-linear term. This is discussed
in Sect. 4. Here we would need to take into account that we need to define B̃ for
any given Martingale-solution, but the equation defining the Martingale-solution
already contains B̃ . But with slightly more regular Z or W this whole problem
does not appear.

– In contrast with the one-dimensional case, existence of global weak solutions is
harder, due to the lack of reasonable energy estimates in L2. Existence of weak
solutions without noise has been proved in [115], using a-priori bounds derived
from the estimate of

∫
eh dx, which cannot be used for any approximation by
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Galerkin methods. They rely on Roethe’s method, a fully implicit discretization of
the time derivative.

– Our proof of continuity of the laws in total variation [9, 41, 42] relies on the weak–
strong uniqueness principle, namely uniqueness of local solutions in the class of
weak solutions. The principle fails in two dimensions, and this is a serious obstacle
for the proof of unique ergodicity.

6 Blow-up Criteria and Regularity

In this section we focus on the deterministic equation in dimension d = 1 and study
possible singularities and a possible blow up, which existence is still wide open.
These are usually standard results for PDEs of this type, and some are well known
for instance for 3D-Navier Stokes.

Based on energy-type estimates, we state standard Leray type estimates for lower
bounds on blow up in terms of Hα-norms. Moreover, we give a few examples for
the fact that a blow up would lead to blow up of all critical norms. Finally, we state
a well known result for an upper bound on the Hausdorff-dimension of the set of
singularities in time.

All results for regularity and Leray type estimates are based on energy estimates.
Many are optimal in the sense that they also hold for complex valued solutions. We
will see in Sect. 7 that some complex valued solutions will blow up in finite time.

6.1 Blow up Profile

In this section we discuss some properties of a possible blow up. First, from the
concept of critical scaling one expects that all norms with higher regularity than the
critical norm will also blow up, in particular all Hs -norms with s > 1/2 should blow
up.

Let us first give examples of blow-up profiles v = h(τ) possible at the blow-up
time τ . For simplicity of presentation we only discuss Hs -norms, as they are easier
to compute. But one should also look at the spaces B or Z from Sect. 3.

– If v exhibits a jump like sign(x), then the Fourier-coefficients decay like 1/k, and
thus v is in Hs if and only if s < 1

2 .
– If v exhibits a logarithmic pole like log(|x|), then the Fourier-coefficients decay

like 1/k, and thus v is in Hs if and only if s < 1
2 . See also Example 4.

– If v exhibits a cusp like |x|α for α ∈ (0,1), then the Fourier-coefficients decay like
|k|−(1+α), and thus v is in H 1/2+ε , and not a possible blow up. It admits a unique
solution that would continue the solution.

Remark 14 (Stationary Solutions) The L2 estimates (3) show that the only possible
smooth stationary solution is h ≡ 0, as for global smooth solutions ‖h(t)‖L2 → 0 for
t ↑ ∞. On the other hand the problem is one-dimensional, so we can try to solve the
equation for stationary solutions ∂4

xh + ∂2
x (|∂xh|2) = 0, explicitly. By direct compu-

tations, we get all solutions

h(x) = c1 + log |1 + c2x|,
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h(x) = c1 + log

∣∣∣∣ coshbx + c2

b
sinhbx

∣∣∣∣,
h(x) = c1 + log |b cosbx + c2 sinbx|.

We remark that the singularities in the solutions above are all log-like, and some of
them also satisfy periodic boundary conditions, which would make them formally
a stationary solution. But none of them is sufficiently regular, to be a mild or weak
solution. Nevertheless, they are exactly at the borderline of regularity, where the local
uniqueness results of Sect. 3 fail. See also Example 4.

6.2 Regularity Criteria

In principle the following should be true:

Meta-theorem If a solution is bounded in a critical space, then it is unique, and
does not have a blow up. This means that the unique local solution exists as long as
at least one (hence all, as the solution is then proved to be regular) of the critical
norms is finite over the time horizon.

The main obstruction to the application of the meta-theorem is the boundedness of
critical quantities. While there are cases (the Navier-Stokes equations in dimension
two, for instance) where the a-priori estimates provide such bounds, this does not
happen, as far as we know, in the problem studied here.

For simplicity, in the rest of the section we focus only on examples in a simple
setting and consider solutions with sufficiently smooth initial condition, in order to
have simple energy type estimates for the Hs -norms without any trouble at t = 0.
The standing assumption of this section is:

Assumption 6 Let h0 ∈ C∞ and h = h(·, h0) be the unique local solution of the
deterministic equation with d = 1 started at h0. Furthermore let τ(h0) be the maxi-
mal time of h, and suppose τ(h0) < ∞ implies lim supt→τ ‖h(t)‖Hs = ∞ for one s.
Moreover, by regularity h is C∞ in space and time for t ∈ [0, τ (h0)).

Theorem 7 Let Assumption 6 with s = 1 be true, i.e. the subcritical norm of
L∞([0, τ ),H1) is infinite. If τ(h0) < ∞, then for every α ∈ ( 1

2 , 9
2 ) the following crit-

ical norms are infinite ∫ τ(h0)

0
‖h(s)‖

8
2α−1
Hα ds = ∞.

Remark 15 As it is used several times in the proofs, we state the following elementary
interpolation inequality. For γ > α and β ∈ [α,γ ],

‖h‖β ≤ C‖h‖
γ−β
γ−α
α ‖h‖

β−α
γ−α
γ . (19)

Note that for short-hand notation, we abbreviate ‖ · ‖s = ‖ · ‖Hs = ‖Ds · ‖L2 with
Ds = (−�)s/2.
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Proof Fix α ∈ ( 1
2 , 9

2 ), then by integration by parts and the Sobolev embedding

H
1
6 ⊂ L3,

∂t‖h‖2
1 + 2‖h‖2

3 = −2
〈
∂xh, ∂3

x

(|∂xh|2)〉
L2 = 2

∫ L

0

(
∂2
xh

)3
dx ≤ c‖h‖3

13
6
.

By interpolation (19) using Young’s inequality,

∂t‖h‖2
1 + 2‖h‖2

3 ≤ ‖h‖2
3 + c‖h‖

8
2α−1
α ‖h‖2

1.

Finally, by Gronwall’s lemma, the proof is complete. �

Remark 16 Note that we can prove the same statement for the Lp([0, τ (h0)], Y )

norm of any other space Y provided

‖h‖3
13
6

≤ ‖h‖2
3 + c‖h‖p

Y ‖h‖2
1.

Thus as example we also obtain under the assumptions of Theorem 7 that also the
following critical norms are infinite:

∫ τ(h0)

0
‖h(s)‖16/3

W 1,4 ds = ∞ and
∫ τ(h0)

0
‖h(s)‖4

C1 ds = ∞.

Moreover, we can consider derivatives of other Hs -norms. Thus in principle we
can obtain any critical space with this approach.

6.3 Blow up Below Criticality

In this section we will study the blow up in a space below criticality, i.e. in some Hs

with s < 1
2 . This is a slight generalization of Theorem 7 and prepares the results of

Leray type shown later. For 1
4 ≤ s ≤ 1 we obtain:

∂t‖h‖2
s ≤ −c‖h‖2

2+s + 4
∫ L

0
D2s∂xh · ∂xh∂2

xhdx

≤ −c‖h‖2
2+s + C‖h‖1+2s‖h‖ 9

4
‖h‖ 5

4
,

where we used the Sobolev embedding H
1
4 ⊂ L4. Fix γ ∈ ( 1

2 , 5
4 ] and use (19)

∂t‖h‖2
s ≤ −c‖h‖2

2+s + C‖h‖
3+2s

4+2s−2γ
γ ‖h‖

9+4s−6γ
4+2s−2γ

2+s .

Using Young’s inequality with exponents p = (8 + 4s − 4γ )/(9 + 4s − 6γ ) and
q = (8 + 4s − 4γ )/(2γ − 1) we derive

∂t‖h‖2
s ≤ C‖h‖

2(3+2s)
2γ−1

γ .

This inequality implies the following result.
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Theorem 8 Under Assumption 6 suppose s ∈ [ 1
4 ,1]. Then for γ ∈ ( 1

2 , 5
4 ]:

∫ τ(h0)

0
‖h(t)‖

2(3+2s)
2γ−1

γ dt = ∞.

Note that for a blow up below criticality with s < 1
2 the Lp([0, T ],Hγ )-norm in

this theorem has a smaller p than assured by Theorem 7. For fixed s the spaces in the
above theorem always have the same level of criticality.

6.4 Leray Type Results

We state the following theorem, which is the analogy of one of the several celebrated
results of Leray [67] on the Navier-Stokes equations. It relies mainly on a comparison
result for ODEs and energy estimates.

Theorem 9 Let Assumption 6 be true. If s > 1
2 , then there is a universal constant

C > 0 only depending on s such that

‖h(t)‖s ≥ C
(
τ(h0) − t

)−(2s−1)/8
for all t ∈ [0, τ (h0)).

Proof For s = 1 + δ with δ ∈ (− 1
2 , 3

2 )

∂t‖h‖2
1+δ + 2‖h‖2

3+δ = −2
∫ L

0
∂2
xD2δh · B(h,h)dx = 4

∫ L

0
∂xD

2δh · B(h, ∂xh)dx

≤ C|h|1+δ+ε |h| 5
2 −ε

|h|3+δ,

where we used Lemma 1 with α = 2 + δ, β = 1
2 − ε, and γ = −α + ε for some small

ε ∈ (0, 1
2 ) such that ε + δ ∈ (− 1

2 , 3
2 ). Now interpolation (see Remark 15) yields

∂t‖h‖2
1+δ + 2‖h‖2

3+δ ≤ C‖h‖
1
4 (7−2δ)

1+δ |h‖
1
4 (5+2δ)

3+δ .

As (5 + 2δ) < 8, apply Young’s inequality with p = 8/(7 − 2δ) and q = 8/(1 + 2δ)

to derive

∂t‖h‖2
1+δ ≤ C‖h‖2(5+2δ)/(1+2δ)

1+δ = C‖h‖2(3+2s)/(2s−1)
s .

Recall that by comparison principle for ODEs for a solution ϕ of ϕ′ ≤ Cϕp , on (0, τ )

we have

ϕ(s) ≤ [
ϕ(t)−(p−1) + C(p − 1)(t − s)

]− 1
p−1 for all 0 < t < s < τ(h0).

Solving this for ϕ(t) and passing to the limit s → τ(h0) yields the claim for s ∈
( 1

2 , 5
2 ).

The general case is proved similarly, by starting with ∂t‖h‖2
k+δ for k ∈ N and then

distributing the derivatives as evenly as possible on the tri-linear terms by integration
by parts. Thus proceeding as above yields the claim. �
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6.5 The Set of Singular Times

Let us state without proof a bound on the set of singular times. Note that due to the
energy estimate from (3) solutions are at some point smooth and small in H2 and thus
from that point on one has a global unique solution.

Let h be a global weak solution to (9) and consider the set of regular times of h,

R = {
t ∈ (0,∞) : h is continuous with values in H1 in a neighborhood of t

}
.

By the smoothness of local solutions R is equal to the set of all times t such that
h is C∞ in space and time in a neighborhood of t . Define the set of singular times
S = [0,∞) \ R.

The theorem (in the spirit of results of Leray [67], Scheffer [97] for Navier-Stokes)
states, that the set of singular times is “small”. For the proof, which is based on
Theorem 9, see [16].

Theorem 10 Given a global weak solution h to (9), the set S of singular times of h

is a compact subset of [0,∞) and

H
1
4 (S ) = 0,

where H
1
4 is the 1

4 -dimensional Hausdorff measure.

Remark 17 It is possible to give a further limit to the set of singular times by showing
that its box-counting dimension is smaller or equal than 1

4 . This result can be proved
as in [87] and we refer to this paper for further details.

6.6 An “Inviscid” Variation

Analogous to the relation Navier-Stokes and Euler equation, one might neglect the
surface diffusion hxxxx and keep only the nonlinear surface dynamics. But in this
case the blow-up is easier to prove. Consider

∂th + (
h2

x

)
xx

= 0

subject to periodic boundary conditions on [0,L]. If we have a non-constant smooth
solution of the above problem, then we will show below that there is always a loss of
smoothness and thus a blow-up in finite time. For simplicity we argue by contradic-
tion, and study sufficiently smooth solutions. However we do not try to determine the
norm of least regularity that still blows up.

In fact the main issue for the inviscid problem above is the existence of a, at
least local, smooth solution. By similarity with the Navier–Stokes/Euler equations,
one may believe that the methods developed in the latter case [61, 106] may work.
A quick series of computations shows that this is not the case. Indeed there is a
more fundamental problem here, since not even general results such as the Cauchy–
Kovalevskaya theorem work. The reason, roughly speaking, is the number of deriva-
tives in the nonlinearity.
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It is easy to verify that for a sufficiently smooth solution h the following quantities

M0 :=
∫ L

0
h(t, x) dx, E0 :=

∫ L

0
h(t, x)2 dx, and

∫ L

0
hx(t, x)3 dx,

are conserved and independent of time. As usual we can assume without loss of
generality that the total mass M0 is zero.

Let us prove first a bound in H 1. Let φ(x) be a smooth function such that φ′′(x) =
arctan(x), then the energy estimate for φ(h) yields

2

3

∫ t

0

∫ L

0

h4
x(τ )

1 + h2(τ )
dx dτ =

∫ L

0
φ
(
h(0)

)
dx −

∫ L

0
φ
(
h(t)

)
dx.

Since φ has quadratic growth, the integrals on the right-hand side are uniformly
bounded in time by a constant depending on E0. In particular,

∫ L

0
hx(t)

2 dx ≤
(∫ L

0

hx(t)
4

1 + h(t)2
dx

) 1
2
(∫ L

0
1 + h(t)2 dx

) 1
2

≤ c(L,E0)

(∫ L

0

hx(t)
4

1 + h(t)2
dx

) 1
2

,

and we can conclude that for every t > 0,

∫ t

0
‖hx(τ)‖2

L2 dτ ≤ C(L,E0).

The H 1 estimate immediately yields a L∞ bound. Due to Sobolev’s embeddings,
∫ ∞

0
‖h(t)‖2

L∞ dt ≤ C(L,E0). (20)

We can now preliminarily show that some solutions cannot be global.

Proposition 6 Assume that h(0) is smooth and non-zero. If

∫ L

0
h(0)3 dx ≤ 0,

then there cannot be a global smooth solution with initial condition h(0).

Proof Let us first remark that h is by assumption on h(0) also non-zero. The energy
estimate for

∫
h3dx yields after a short calculation

4
∫ t

0

∫ L

0
|hx(s)|4 dx ds =

∫ L

0
h(0)3 dx −

∫ L

0
h(t)3 dx

≤
∫ L

0
h(0)3 dx + E0‖h(t)‖∞.
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By (20) we can deduce that there is a sequence tn ↑ ∞ such that ‖h(tn)‖L∞ → 0.
If we apply this fact to the previous inequality, we obtain a contradiction to h being
non-zero:

4
∫ ∞

0

∫ L

0
|hx(s)|4 dx ds ≤

∫ L

0
h(0)3 dx ≤ 0. �

Let us prove now that no non-zero global solution exist.

Theorem 11 Every smooth solution that exists for all times is constant.

Proof Assume, as before, without loss of generality that M0 = 0. A simple compu-
tation yields

d

dt

∫ L

0
e−h(t) dx = 1

3

∫ L

0
h4

x e−h(t) dx,

and hence for any t ≥ s ≥ 0

∫ L

0
e−h(s) dx ≤

∫ L

0
e−h(t) dx.

Consider again the sequence of times tn ↑ ∞ such that ‖h(tn)‖L∞ → 0. On this se-
quence ∫ L

0
e−h(tn) dx → L for → ∞.

Therefore by the conservation of mass for any s ≥ 0

1

L

∫ L

0
e−h(s) dx ≤ lim

n→∞
1

L

∫ L

0
e−h(tn) dx = 1 = e− 1

L

∫ L
0 h(s) dx .

This is the case of equality in the Jensen inequality, thus h(s) is constant and, since
M0 = 0, h(s) ≡ 0. �

7 Complex-Valued Blow up

In this section we study complex-valued solutions of the equation posed in d = 1.
Obviously, our energy estimate (3) that is used for global existence fails. Our main
aim is to provide a simple proof, that there is a blow up for complex valued solutions
of (9). Here we construct a large class of solutions that do blow up. The key idea is to
derive an infinite-dimensional system of ODEs that allows blow up by transporting
mass to ∞ in finite time. This is also the idea of the dyadic model embedded into an
averaged Navier-Stokes equation in [108].

Our result points out the following fact. All energy estimates that do not rely on a
special cancellation property, like the L2 estimate, cannot be used alone to rule out a
possible blow up. This includes all energy type estimates like the ones in Sect. 6 that
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treat norms of higher regularity than L2, as they are usually also true for complex-
valued solutions.

7.1 The Network of ODEs

We rewrite the PDE as an infinite system of ODEs, by going into Fourier-space.
Suppose for simplicity of presentation that the equation is posed on [0,2π]. Let

h(t, x) =
∞∑

k=−∞
hk(t) eixk

then for all k �= 0 (note, h0 ≡ 0 by mass conservation)

∂thk = −k4hk + k2
∞∑

l=−∞
lhl(k − l)hk−l

Definition 7 Define the weighted Fourier modes by χk = khk .

Thus we have for all k �= 0

∂tχk = −k4χk + k3
∞∑

l=−∞
χlχk−l . (21)

In the following, we need local existence and uniqueness of solutions only for a
simplified system, where it will be obvious. But let us remark that either the results
in [19] for a probabilistic representation via branching processes yields the existence
of solutions for the system (21), or we can modify our results in Sect. 3 and use
existence of solutions for the original PDE.

Definition 8 We define the following spaces

Σ = {
χ ∈ CZ : χk = 0 ∀k ≤ 0

} ∼= CN,

Σ+ = {χ ∈ Σ : χk ≥ 0 ∀k ≥ 0} ∼= [0,∞)N,

Σ(L) = {
χ ∈ Σ : |χk| ≤ Lk ∀k ≥ 0

}
for L > 0.

The space Σ(L) is a weighted L∞-space in Fourier space for solutions h of (9).
Note that |χk| ≤ Lk implies |hk| ≤ Lk/k. For L > 1 this is a space of quite irregular
distributions, while for L ∈ (0,1) the corresponding functions h are C∞.

For L = 1 we conjecture that this corresponds to a critical space for h.

Lemma 9 The spaces Σ and Σ+ are invariant for (21) for sufficiently smooth solu-
tions.

We do not give a detailed proof. One idea of proof is to use the probabilistic
representation of solutions from [19]. Another approach would be to show that the



278 D. Blömker, M. Romito

standard fixed-point-iteration for the mild formulation (see (23) below) preserves the
spaces of functions with values in Σ and Σ+.

7.2 Explicit Solution

In Σ Eq. (21) simplifies to

∂tχk = −k4χk + k3
k−1∑
l=1

χlχk−l for all k > 0. (22)

Thus any Fourier mode k is driven only by lower modes l ∈ {1, . . . , k}. For the first
few equations: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tχ1 = −χ1,

∂tχ2 = −16χ2 + 8χ2
1 ,

∂tχ3 = −81χ3 + 54χ1χ2,

∂tχ4 = −216χ4 + 108χ1χ3 + 54χ2
2 ,

. . .

This system can be solved inductively, and we obtain easily:

Lemma 10 For all initial conditions in Σ , there is a solution χ of (22) such that
χ(t) ∈ Σ for all t ≥ 0. Moreover, for all such solutions, the space Σ+ of positive
solutions is invariant.

Let us remark, that there is no regularity for the solution provided by this lemma.

Remark 18 (Mild Solution) We can also restate (22) as mild formulation for solutions
in Σ .

χk(t) = e−tk4
χk(0) + k3

k−1∑
l=1

∫ t

0
e−(t−s)k4

χl(s)χk−l (s) ds. (23)

7.3 Exponential Bound

This section provides the invariance of Σ(L).

Lemma 11 Suppose that χ solves (22) in Σ and |χ(0)| ∈ Σ(L) for some L > 0,
then χ(t) ∈ Σ(L) for all t > 0, k > 0.

This allows for exponential divergence (in k) of solutions provided χk(0) > 1 for
one k.
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Proof By induction. First, |χ1(t)| = e−t |χ1(0)| ≤ L. Then, from the mild formula-
tion (using the assertion up to k − 1)

|χk(t)| ≤ e−tk4 |χk(0)| + k3
∫ t

0
e−(t−s)k4

k−1∑
l=1

|χl(s)| · |χk−l (s)|ds

≤ e−tk4
Lk + k3

∫ t

0
e−(t−s)k4

k−1∑
l=1

LlLk−lds

≤ Lk

(
e−tk4 +k4

∫ t

0
e−(t−s)k4

ds

)
≤ Lk. �

Note that the Lemma is also true if we consider only the first finitely many k.

7.4 Stability

Under very weak regularity assumptions (even exponentially growth of Fourier-
coefficients) we can prove that the solution is eventually smooth after some time
and converges to 0.

Lemma 12 Suppose that χ solves (22) in Σ(L) for some L > 0.
Then for all small ε > 0 there is a sequence of times 0 < T1 < · · · < Tk ↗

T ∗ < ∞, such that for all k > 0 one has

|χk(t)| ≤ 1

2
εk for allt > Tk

Proof By Induction. First,

|χ1(t)| ≤ e−t L <
1

2
ε for t > t1 = ln(2L/ε).

Then, using the mild formulation (23)

χk(Tk−1 + t) ≤ e−tk4 |χk(Tk−1)| + k3
∫ t

0
e−(t−s)k4

k−1∑
l=1

1

2
εl 1

2
εk−lds

≤ e−tk4
Lk + 1

4
εk <

1

2
εk

for all t > tk = 1
k4 ln(4Lk/εk). Finally, define Tk = ∑k

l=1 tl , which converges as tl ∼
C/l3. �

7.5 The Blow-up

This section provides a very simple lower bound that leads to a blow up for suffi-
ciently large smooth solutions in Σ+. Let us remark that [68, 69] proved a similar
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Fig. 2 First six curves of χk ,
growing fast in k already for
χ1(0) = 2.2 and χk(0) = 0 for
k �= 1. The value necessary for
the lower bound of Theorem 12
would be χ1(0) > 27, as
a = b = 1.

result for 3D-Navier Stokes which is significantly more complicated, but yields so-
lution with finite L2-norm, while we only obtain a lower bound on the blow up of
solutions.

Theorem 12 Suppose χ is a solution of (22) in Σ+, such that for some a, b ∈ N and
C > 0

χk(0) ≥ C for k ∈ [a, b].
Then for any L ∈ [2, 2

27
Ca3

b4 ] (and thus C > 0 large) there are times 0 = T0 < T1 <

· · · < TN ↗ T ∗ < ∞ such that for all N ∈ N, the following is true:
For all k ∈ [a2N,b2N ]

χk(TN) ≥ CLN and inf
t∈[TN ,TN+1]

{
χk(t)

} ≥ 2

3
CLN.

Thus for some time t∗ ≤ T ∗

‖χ(t)‖∞ = sup
k∈N

|χk(t)| ↗ ∞ fort → t∗.

For a numerical illustration see Fig. 2. Note that this result is in well agreement
with the criticality heuristic. It is easy to check that ‖χ(t)‖∞ ≤ C‖h‖Hs for all s ≥ 1

2 .
Thus the norm blows up in the critical and all subcritical Hs -spaces.

Proof We proceed by induction on N . Define TN = ∑N
k=1 tk , where tk is defined

later. Furthermore, fix α = 2
3 .

For N = 0 the lower bound holds at T0 = 0. For the lower bound on [T0, T1] =
[0, t1] consider for k ∈ [a, b] that for t ∈ [0, t1]

χk(t) ≥ e−tk4
χk(0) ≥ e−t1b

4
C = αC if t1 = 1

b4
ln

(
α−1).

For the induction step from N − 1 to N we first prove the bound at TN . Fix k ∈
[a, b] · 2N . By assumption on [TN−1, TN ] we have

χlχk−l ≥ α2C2L2N−2
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for at least one l ∈ {1, . . . , k − 1}. Thus

χk(TN) = χk(TN−1 + tN )

≥ k3
∫ tN

0
e−(tN−s)k4

k−1∑
l=1

χl(TN−1 + s)χk−l (TN−1 + s)ds

≥ a323N

∫ tN

0
e−(tN−s)b424N

ds · α2C2L2N−2

≥ a3

b4

1

2N

(
1 − e−tN b424N )

α2C2L2N−2 = CLN

provided that

tN = 1

b424N
ln

((
1 −

(
2

L

)N
b4L2

Cα2a3

)−1)
.

Here we used that tN is well defined for all N , if L ≥ 2 and 2Lb4 < Cα2a3, which is
true by assumption.

On [TN,TN+1] we now use the lower bound at time TN . Fix again k ∈ [a, b]2N ,
then

χk(TN + t) ≥ e−tk4
χk(TN) ≥ e−tb424N

CLN ≥ αCLN,

if tN ≤ b−42−4N ln(α−1). This in turn is true for all N , if

1

2
(1 − α)α2 ≥ Lb4

Ca3

which is true by assumption. Note that α = 2
3 maximizes the right hand side with

maximum 2/27. It remains to check that T∗ = ∑∞
l=1 tl < ∞. But this is true, as for

N → ∞

tN = 1

b424N
ln

(
1 +O

((
2

L

)N))
= 1

b424N
O

((
2

L

)N)
= O

((
1

8L

)N)
. �

We conclude the paper by rephrasing the result of the previous theorem in terms
of the original deterministic PDE (9).

Corollary 2 There are 2π -periodic and complex-valued solutions h of (9) with
smooth initial conditions (i.e., C∞) such that for some finite time t� > 0

sup
k∈Z

|k||hk(t)| ↗ ∞ fort → t∗,

where {hk}k∈Z are the Fourier coefficients of h.

Especially, all Hα-norms for α ≥ 1
2 blow up at t�, where H1/2 is a critical space.

Note that for α < 1
2 the Hα-norms might still all be finite.
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Jacques Tits is one of the outstanding mathematicians of our time. His published (and
unpublished) works, most of which are collected in these impressive four volumes,
encompass a wide area of modern mathematics. The central and recurring topics in
his œuvre are certainly group theory and geometry. However, group theory itself is a
vast area. During the last six decades, Jacques Tits has contributed important results
to finite group theory, to Lie theory, to algebraic group theory, to combinatorial and
geometric group theory, to Kac-Moody theory, and to arithmetic geometry. Probably
he is one of the few present-day mathematicians who may claim to have an overview
of group theory in its entirety. In some of these areas, he was among those who laid
the foundations, while in others, he pushed existing results much further. The task to
describe what is in these four volumes is thus somewhat intimidating. I will try to
highlight and describe some of their contents, led partially by my own mathematical
interests and knowledge. The four volumes group his work, of course, in a chrono-
logical order. In what follows, I will try to group some of Tits’ contributions by their
topics.

Multiply Transitive Groups and Lie Groups A group G acting on a set X is
called k-transitive if given any two k-tuples of distinct elements of X, there is a group
element g that maps one k-tuple to the other. We assume here that X contains at least
k elements. The action is called sharply k-transitive if the group element in ques-
tion is uniquely determined. The reader should be warned here that the terminology
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has changed over the years, and also varies in Tits’ articles—what we call sharply
k-transitive here was called earlier k-transitive.

In any case, the symmetric group on k letters is an example of a sharply k-transitive
group. At the same time, its action is �-transitive for all � ≤ k. If F is a field, then
the projective linear group PGL2(F ) acts sharply 3-transitively on the projective line
P = F ∪ {∞}. Surprisingly, there exist no infinite sharply k-transitive groups for
k ≥ 4. Two of the sporadic simple groups, the Mathieu groups M11 and M12, are
among the finite sharply 4- and 5-transitive groups. Tits’ PhD Thesis [6] discusses
these transitivity properties, first in the case of the projective linear groups, and then
in general. It contains, in particular, the classification of all sharply k-transitive groups
with k ≥ 4, a remarkable result.

In the long article [7] (roughly equivalent to a Habilitationsschrift) Tits obtains
a large number of interesting results about homogeneous spaces of Lie groups and
locally compact groups, based on the transitivity properties of the actions. My fa-
vorite is the classification of 2-transitive Lie groups. Suppose that a Lie group G acts
faithfully (i.e., with trivial kernel) and 2-transitively on a connected manifold X. In
present-day terminology, he proves that there are precisely three cases.

(1) The identity component G◦ of G is the projective special linear group over the
real numbers, the complex numbers, the quaternions or the Cayley division alge-
bra, acting on the corresponding projective space.

(2) G◦ is the connected isometry group of a hyperbolic space over the real numbers,
the complex numbers, the quaternions or the Cayley division algebra, acting on
its visual boundary.

(3) G = H �R
m, where H ⊆ GLmR is a closed linear Lie group acting transitively

on the nonzero vectors of Rm.

In particular, the topological space X is either a projective space or a sphere of a real
vector space. Related results on the topology of X had been obtained at the same time,
and independently, by A. Borel. However, Borel did not classify the corresponding
Lie groups.

In the same article, Tits obtains many more equally interesting classification re-
sults. For example, he classifies transitive faithful G-actions on manifolds where ev-
ery point stabilizer Gx acts transitively on the tangent directions at x. The results
in [7] seem to be less known than they deserve. Some particular cases were re-
discovered and reproved several times by others. This is probably also due to the
fact that prior to the publication of Tits’ collected works, it was difficult to get hold
of a copy of [7].

The Structure of Lie Groups and Algebraic Groups The article [7] depends very
much on the structure theory of semisimple Lie groups. As Tits himself pointed out,
the work on transitivity properties of Lie groups led him to the combinatorial struc-
ture of parabolic subgroups, and finally to the definition of buildings. Also, Dynkin
diagrams (called “figure de Schläfli”) of simple Lie groups appear in [7], with a ref-
erence to Dynkin’s work. In the early 60’s, Tits wrote a whole series of papers on
real forms of the exceptional Lie groups E6,E7 and E8. In these articles, his focus
shifts already from Lie groups to semisimple algebraic groups over arbitrary fields.



Jacques Tits: “Œuvres. Collected Works, Vols. I–IV” 289

At the same time the associated combinatorial structures emerge, which led him sub-
sequently to the discovery of buildings.

I also want to mention the short Lecture Notes volume [11] on the representa-
tion theory of Lie groups. In combination with [13], where rational representations
of reductive groups over arbitrary fields (and in particular of real Lie groups) are
classified, these tables are indispensable for any Lie theorist.

His joint paper [1] with A. Borel on the structure of reductive algebraic groups
over arbitrary fields still stands as a landmark paper and as a standard reference. The
classification and the structure theory of semisimple algebraic groups over arbitrary
fields is a recurring topic in Tits’ work. His Boulder article [9] summarizes his results
in a very nice and reader-friendly way. History and terminology are not always fair:
what is nowadays often called the “Satake diagram” of a semisimple algebraic group
should properly be called the “Tits diagram”. These decorated Dynkin diagrams, to-
gether with the datum of the so-called anisotropic kernel, classify algebraic groups up
to isogeny over arbitrary fields. This result is certainly one of the major mathematical
achievements of Jacques Tits.

Another recurring theme in Tits’ work is the underlying “abstract” group structure
of a simple algebraic group or Lie group. In [8] he shows that if G is an absolutely
simple algebraic group, defined over a sufficiently large field F , and if G† ⊆ G(F)

is the subgroup generated by the F -rational unipotent elements, then G†/Cen(G†) is
simple as an abstract group. His proof uses spherical buildings and (B,N)-pairs in a
systematic way. In another joint paper with A. Borel [15] he proves (essentially) that
if the groups of rational points of two absolutely simple isotropic algebraic groups G

and G′, possibly defined over different fields F and F ′, are isomorphic as abstract
groups, then G and G′ are isomorphic as algebraic groups. (The precise statement
is somewhat more elaborate, but this is basically the result.) Tits needed this for his
work on the automorphism groups of spherical buildings associated to semisimple
algebraic groups in [16]. It would be interesting to see if nowadays, with the advanced
structure theory of buildings at hand, buildings could be used to prove this deep result
in a completely geometric way.

Buildings The discovery of the various kinds of buildings is probably the mathe-
matical topic which is associated most often with Jacques Tits. It had been known at
least since the 19th century that the projective geometry, that is, the collection of all
nontrivial subspaces of a given vector space V , is a very useful tool for studying the
general linear group GL(V ). It was also known that this projective geometry can be
described by a relatively short list of geometric incidence axioms. The fundamental
theorem of projective geometry asserts that

(1) every projective geometry of rank at least 3 (in the synthetic sense) arises from
some vector space over some field, and that

(2) every automorphism of this geometry comes from a semi-linear automorphism
of the vector space.

These are extremely useful facts, as they guarantee, in the presence of very few com-
binatorial axioms, the existence of a field, a vector space, and a linear group. Simi-
lar constructions were known for the other classical groups, like symplectic groups
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or orthogonal groups. However, it was not so clear which combinatorial structures
should correspond to the exceptional groups like E6,E7 and E8. Geometers such
as H. Freudenthal devoted a large number of papers to this question. However, the
combinatorial constructions looked complicated and a unifying theme was missing.

This changed completely with Tits’ discoveries. Firstly, he showed in a uniform
way that to every group G with a Tits system or (B,N)-pair, that is, with two sub-
groups B,N ⊆ G satisfying a list of four axioms, one can associate a combinatorial
structure, the building �(G). The building is a simplicial complex, and G acts sim-
plicially on it. Secondly, the building itself can be characterized by a very short set
of combinatorial axioms. There is an associated Weyl group W = N/B ∩ N , which
describes the so-called type of the building. If W is finite, then the building is called
spherical. Tits’ discovery was that one can find such a (B,N)-pair in every simple
isotropic F -algebraic group G. If the F -rank of G is at least 2, then G(F)�Aut(F )

is (essentially) the group of all combinatorial automorphisms of the building �. The
G(F)-action on the building can then be used in order to study G and its subgroups.
This result is proved in Tits’ Lecture Note [16]. The other important result proved
in [16] is the classification of spherical buildings of rank at least 3. These spheri-
cal buildings arise from algebraic data (such as fields, division algebras, Cayley al-
gebras, quadratic forms). In fact almost all of them arise from simple F -algebraic
groups. The fundamental theorem of projective geometry is a special case of this
result.

This classification result from [16], which one might call the fundamental theorem
of spherical buildings, is the reason why buildings turned out to be so useful in group
theory (including the classification of the finite simple groups) and geometry. Again,
the presence of a combinatorial structure � satisfying a short list of simple axioms
guarantees the presence of a field F and (in most cases) a simple F -algebraic group
acting on �. This had, for example, striking applications in Riemannian geometry in
connection with manifolds of nonpositive curvature and with isoparametric foliations.

At the very end of [16], the Moufang condition appears already. The Moufang
condition, a transitivity property of the automorphism group of the building, turned
out to be an essential property of spherical buildings. In [16] Tits shows that every
spherical building of rank at least 3 satisfies the Moufang condition. The proof, al-
beit long, is strictly combinatorial. Once this is shown, the algebra of root groups
and commutator relations may be used to translate the classification into an alge-
braic problem. To this end, Tits studies and classifies certain Moufang polygons,
that is, spherical buildings of rank 2 satisfying the Moufang condition, in several
of his papers. The complete classification was carried out by Tits and R.M. Weiss
in the monograph [29] which is an almost mandatory supplement to Tits’ collected
works.

There is one other paper on buildings [18] that I want to mention here, where the
“local approach” to buildings is carried out. The paper is important for several rea-
sons. Firstly, it introduces a completely different approach to buildings as chamber
systems, that is, as generalized Cayley graphs. This approach to buildings (which
is shown to be functorially equivalent to the older one) is particularly well-suited
for group-theoretic questions, while the older simplicial approach fits better into the
world of metric geometry and nonpositive curvature. Secondly, this article gives a
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criterion when a simplicial complex that looks locally like a building is actually a
building or a quotient of a building. This result has become increasingly important
during the last years, for example in Riemannian geometry. It has also led to the
construction of exotic buildings and lattices, starting with a finite complex of finite
groups. This article goes well with the fundamental papers by M. Gromov on geo-
metric group theory that appeared at about the same time.

Reductive Algebraic Groups over Local Fields If G is a reductive isotropic group
over a local field F , then there is the Tits system (B,N) and its spherical building
�, as described in the previous section. However the valuation of F gives rise to a
richer subgroup structure of G(F) and eventually to a second Tits system (I,N),
with the same subgroup N , but a different group I ⊆ G(F), the Iwahori subgroup.
The second building, X, associated to (I,N) is not of spherical type. Its Weyl group
W = N/N ∩ I is an infinite euclidean reflection group, and X is a euclidean build-
ing. The simplicial complex X is unbounded and carries a metric of nonpositive
curvature. There is a close relation between the two buildings: the spherical build-
ing � appears as the “boundary at infinity” of the euclidean building X. In a se-
ries of joint papers with F. Bruhat [3–5], Tits developed the structure theory both
of euclidean buildings and of reductive groups over local fields. In [23] he outlined
how the classification of spherical buildings can be used to achieve a classification
of euclidean buildings of dimension at least 3. In this article, he considers in fact
a much wider class of metric spaces of nonpositive curvature, which need not be
buildings in the combinatorial sense. Nowadays it is common to call these spaces
nondiscrete euclidean buildings. Similarly to R-trees, these spaces may branch ev-
erywhere.

Euclidean buildings are the counterparts in arithmetic geometry of the Riemannian
symmetric spaces of noncompact type. They found numerous applications in various
fields, and notably provide important tools for studying or constructing representa-
tions of reductive groups, for the Langlands program, for Shimura varieties, and for
Deligne-Lusztig theory. Yet, they are also important in Riemannian geometry and
geometric group theory, where the (wide open) rank rigidity problem predicts that
euclidean buildings and symmetric spaces are basically the only irreducible locally
compact higher rank spaces of nonpositive curvature admitting a cocompact group
action.

Kac-Moody Groups and Twin Buildings Kac-Moody algebras, which are infinite-
dimensional generalizations of semisimple Lie algebras, were discovered indepen-
dently by V. Kac and R. Moody. These algebras attracted immediately the attention
of theoretical physicists, and they play nowadays a role in various physical models.
The construction of Kac-Moody groups, however, turned out to be more complicated.
For complex affine Kac-Moody algebras one can construct corresponding groups as
loop groups of compact Lie groups. However, this method fails for other algebras. In
[22, 24, 26, 27] Tits shows that there is a group functor that associates to every Kac-
Moody datum and every field F a split Kac-Moody group G(F). The construction
resembles the construction of complex simple Lie groups in terms of the Steinberg
relations. Associated to G, there are now two Tits systems (B±,N) and two build-
ings �±, sharing the same Weyl group W . The group G(F) acts on both buildings,
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preserving a map δ∗ : �+ × �− → W , the codistance function. This structure is
called a twin building. Twin buildings over finite fields have been used, for example,
by B. Rémy to construct new simple locally compact groups and lattices acting on
spaces of nonpositive curvature.

Coxeter Groups, the Tits Alternative, Trees, and the Monster The geometry and
structure of Coxeter groups is essential for understanding buildings. Tits has devoted
several papers to Coxeter groups, to their structure and to the solution of the word
problem. Bourbaki’s volume [2] was heavily influenced by Tits. These articles are
still the standard references for Coxeter groups and root systems.

Such questions belong to the wider area of geometric group theory. Perhaps the
most famous contribution of Tits here is what is nowadays called the Tits alterna-
tive [14]: If Γ is a finitely generated linear group, then Γ either is virtually solvable,
or it contains the free group on two generators.

Trees are special cases of euclidean buildings. Tits studies group actions on trees
and related automorphism groups in [12, 17]. He proves a simplicity criterion for
groups acting on trees in [12]. In [17] he introduces what is nowadays called an
R-tree, and he proves that a solvable group acting without fixed point on such a
tree fixes one end or two ends. R-trees have since then become quite important in
geometric group theory and in Riemannian geometry, for example in connection with
degenerations of hyperbolic structures on closed manifolds.

Tits’ work had also a significant impact on finite group theory. The classification of
the finite spherical buildings of rank at least 3, carried out in [16], plays an important
role in the classification of the finite simple groups. Tits investigated also the sporadic
finite simple groups, and the Tits group of order 211335213 was discovered by him
[8]. He wrote two papers on the Monster, simplifying Griess’ construction [19, 21]
and one on the Moonshine module [25].

The Volumes Jacques Tits’ works appeared in four volumes, published by the Eu-
ropean Mathematics Society and edited by F. Buekenhout, B. Mühlherr, J.-P. Tignol
and H. Van Maldeghem. The editors have done a great job collecting and reproduc-
ing Tits’ works. This was apparently not always an easy task, as there are several
papers that were difficult to obtain (and to reproduce). Also, they included some
manuscripts which were previously unpublished. In particular, the editors have in-
cluded (and re-typed) two important sets of lecture notes from Yale [10, 20]. Each
volume closes with an interesting list of comments and notes by the editors, pointing
towards further developments, corrections and complements. Everyone interested in
group theory should have access to these four volumes. What is not included are the
Résumés de Cours articles with Tits’ contributions from 1973 to 2000. But these are
available from the Société Mathématique de France in a nice separate volume [28].
And finally, the monograph “Moufang Polygons” by Tits and Weiss [29] should be
mentioned here. The combination of these six books encompasses some of the finest
group theory and geometry of our time.
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Quantum field theory can be considered as one of the
cornerstones of modern physics. Historically, it origi-
nates from the problem of quantizing the electromagnetic
field, dating back to shortly after the advent of quantum
mechanics. This amounts to understanding the quantiza-
tion of a system with infinitely many degrees of free-
dom, namely, the values of the electromagnetic field at all
spacetime points. It turned out that precisely this property
would form the main obstacle in the search for a mathe-
matical formalism for quantum field theories.

In the 1950s this led to a separation of the field. On
the one hand perturbation theory led to a computationally

yet undefeated approach, where in particular Feynman’s graphical method stream-
lined the analysis of physical probability amplitudes. On the other hand, an elegant
axiomatic approach to quantum fields emerged through the work of Haag, Kastler,
Wightman and others, leading to the subject known as algebraic quantum field theory.
For a historical account we refer to [7]. Even though the two approaches ought to be
complementary, it turned out that the separation only became larger and larger to-
wards the end of the last century. This was mainly due to the fact that physically
relevant interacting quantum fields were found difficult to be included in the strict
algebraic formulation, while at the same time the computational approach of Feyn-
man amplitudes mistified the mathematical structure behind this successful branch of
physics.
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The last fifteen years, however, have seen a lot of progress that gives reason to
be more optimistic. This is partly based on the work that is done in the analysis of
the mathematical structure of Feynman amplitudes and, at the same time, on the for-
mulation of perturbative algebraic quantum field theory. The book under review is a
valuable witness to a wide range of recent developments that aim at unraveling the
mathematics of quantum field theory. As such, it touches on several newly devel-
oped fields in mathematics that are either inspired by quantum field theory or play an
important role towards understanding it.

In contrast to textbooks such as [4–6, 9] that present the physicists’ rudiments
of quantum field theory to a mathematical audience, the approach taken by Paugam
can be described as the opposite, let us say top-down, approach. It rather describes
the moving forefront of the field, where new mathematics is explored and developed
to build a rigorous formalism for quantum field theory. This makes the textbook an
exciting one, presenting an original view on quantum field theory, but also of a more
advanced level. The graduate students to which the author addresses his book are
therefore warned to come well-prepared. For one thing, the central pillar of the book
is formed by categorial logic and category theory on which the author admits in his
preface that “[the] distilled axioms are pretty indigestible”, suggesting to read the
relevant chapters simultaneously with the later, more explicit chapters. I would add to
that the suggestion that to understand the motivation for setting up this mathematical
formalism, some background on quantum field theory might be useful, referring the
reader to one of the above more “bottom-up” textbooks.

The book is divided into three parts. The first part presents the toolbox of higher
category theory and its use in an original and concise description of differential geom-
etry, partial differential equations, affine group theory and Hopf algebras, symplectic
and Poisson geometry and, finally, homotopical algebra.

The second part deals with classical physics, focussing mainly on variational prob-
lems. An extensive list of physical models are nicely described in the mathematical
language of the first part. The discussion of each of the models is rather brief—the
Standard Model of particle physics for instance only takes two pages—but it is always
accompanied by a reference for further reading.

In the third part we come to the main topic of this book: quantum fields. In an
attempt to complement the top-down viewpoint of the book, let me describe this part
in somewhat more detail, also including the references back to the relevant chapters
in Part I and II.

The first approach to quantum field theory addressed in Paugam’s book is the con-
ventional one, using functional integrals and perturbative methods. The central in-
gredient is Feynman’s path integral that is supposed to compute physical probability
amplitudes. A priori, this path integral is ill-defined and the main challenge is to give
at least some computational significance to it. With the desired constructive formula-
tion of quantum fields still lacking (see [8] for an overview) this is most successfully
accomplished in a perturbative approach: one perturbs a free quantum field by in-
teractions, organized in a nice graph theoretical way by Feynman diagrams. Each of
these diagrams corresponds to a so-called Feynman integral (not to be confused with
the path integral) that contributes to the physical probability amplitudes.

In Paugam’s book we find the free scalar quantum field in Chap. 17 using the
Klein–Gordon equation (cf. Chap. 15.1), following a discussion on quantization of



F. Paugam: “Towards the Mathematics of Quantum Field Theory” 297

classical hamiltonian systems (cf. Chap. 8). Functional integrals and Feynman’s per-
turbative approach are the subject of Chap. 18, also including the physically relevant
class of gauge field theories. Note that for the expected link to functorial analysis
developed in Chap. 4, the reader has to wait until the beginning of Chap. 20.

There is at least one caveat in the above perturbative approach to quantum field
theory: the Feynman integrals corresponding to Feynman diagrams are divergent in-
tegrals. This is the beginning of the process of renormalization, which, in short, is
similar to Cauchy’s principal value that assigns a finite value to a divergent integral.
For Feynman integrals one finds the further complication of subdivergences corre-
sponding to subgraphs, but whose renormalization can be organized in a recursive
manner. Such renormalization schemes have been vital in the formulation of Yang–
Mills gauge theories and eventually of the extremely successful Standard Model of
particle physics.

At the beginning of the new millennium an algebraic structure underlying renor-
malization was discovered by Connes and Kreimer. They build a Hopf algebra on
Feynman diagrams and realized renormalization as a Birkhoff decomposition for the
affine group scheme dual to the Hopf algebra. This was later worked out by Kreimer
and the reviewer for gauge theories, where Hopf ideals corresponding to quantum
gauge symmetries were identified.

The renormalization Hopf algebra for Feynman diagrams in gauge theories is pre-
sented in Chap. 19 where also the dual affine group schemes are identified. Here the
general theory on affine group schemes and Hopf algebras is used from Chaps. 5
and 6.

An alternative approach to quantum field theory is Wilson’s effective field theory.
The idea is to enhance the classical Lagrangian or action functional to take also quan-
tum effects into account. One then proceeds to study the flow of these effective action
functionals as energy varies by analyzing the renormalization group equations.

These methods are well-established by physicists and have recently been put into
a mathematical formalism by Costello in [3]. This includes gauge theories where the
BV-approach plays a prominent role, even though Yang–Mills theory can only be cast
into this formalism in its first-order formulation.

Paugam presents Costello’s approach in Chap. 21, including the BV-formalism
that reflects some of the structure of BV-algebras found in Chap. 13.

One of the recent exciting developments in algebraic quantum field theory is the
opening to a perturbative description through the work of Brunetti, Dütsch and Fre-
denhagen [1] and further developed by others. The idea is to formulate perturbation
theory using a ∗-product deformation of the free quantum field theory, thereby using
Epstein–Glaser renormalization.

Chapter 22 gives an overview of the results in this direction, including the case
of gauge theories and also linking to Hopf algebraic renormalization methods in the
final section.

The ∗-product of the previous paragraph is a concept coming from deformation
quantization. A central result by Kontsevich is the construction of a ∗-product for
any Poisson manifold, deforming the pointwise product of smooth functions thereon.
It is tempting to apply this directly to the field theory setting and try to arrive at a non-
perturbative algebraic quantum field theory, but for now Kontsevich’s construction is
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restricted to the finite-dimensional case. Nevertheless, a link between deformation
quantization and quantum fields has been established by Cattaneo and Felder [2] by
writing the ∗-product as a path integral expectation value for the Poisson σ -model.

Paugam gives an overview of deformation quantization including this link to quan-
tum field theory in Chap. 23, with the mathematical preliminaries found in Chap. 10,
and the Poisson σ -model briefly explained in Chap. 16.3. The author’s generalization
to non-topological quantum field theories using factorization spaces can be found in
Chap. 24, whose mathematical basis is laid in Chap. 12.

In summary, “Towards the Mathematics of Quantum Field Theory” is precisely
what the title tells you: it gives an overview of some of the mathematical research
that is done on unravelling the structure of rigorous quantum field theory. Though at
some points quite advanced and concise—requiring the reader to consult additional
literature—the book is well written with an original organization of the material. Its
reductionist viewpoint makes it a valuable textbook, especially for the more experi-
enced practitioners in this domain of mathematical physics.
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