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Vorwort 

Jahresbericht der Deutschen Mathematiker-Vereinigung, 105, Bd. 2003, Nr. 3 

Vorwrt 

Zu den vom DMV-Präsidium beschlossenen Neuerungen beim Jahresbericht gehört 
auch die Möglichkeit, Nachwuchswissenschaftlern eine Chance zu bieten, sich einer 
breiten Offentlichkeit zu präsentieren. In diesem Heft finden Sie den Ubersichtsartikel 
von D. Horstmann über das Keller-Segel Modell in der Chemotaxis. Darüber hinaus 
kommen wir damit dem Wunsch vieler Leser nach, anwendungsbezogene Beiträge der 
Mathematik zu publizieren, die in diesem Fall tiefliegende Methoden der Analysis ver-
wenden. 

Aufgrund der Umfangsbeschränkungen können in diesem Heft keine Buchbespre-
chungen erscheinen, denen aber in Heft 4 ein größerer Anteil eingeräumt werden wird. 

A. Krieg 
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Abstract 

• Keywords and Phrases: Chemotaxis equations, steady state analysis, global exis-
tence, finite time blow-up, invariant sets 

• Mathematical Subject Classification: 35B30, 35J20, 35J25, 3965, 35K50, 35K57, 
92C17 

This article summarizes various aspects and results for some general formulations of 
the classical chemotaxis models also known as Keller-Segel models. lt is intended as a 
survey of resuits for the most common formulation of this classical model for positive 
chemotactical movement and offers possible generalizations of these results to more 
universal models. Furthermore it collects open questions and outlines mathematical 
progress in the study of the Keller-Segel model since the first presentation of the equa-
tionsin 1970. 

Eingegangen: 24.03.2003 	

DMV 
Dirk Horstmann, Mathematisches Institut der Universität zu Köln, 	 JAHRESBERICHT 
Weyertal 86-90, D-5093 1 Köln, Germany. 	 flIR flMU 

Email: dhorst@mi.uni-koeln.de 	 &) b. j. WUD[1[ zuui 
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1 Introduction 

Mathematical analysis of biological phenomena has become more and more important 
in understanding these complex processes. Thus, the number of mathematicians study-
ing biological and medical phenomena and problems is continuously increasing in re-
cent years. One such biological topic is the movement of population densities or the 
movement of single particies. Changes in the environment of mobile species can influ-
ence its movement. For example, humans sense their environment and given a particu-
lar situation or the state of the environment, they make their decisions as to where to 
move. For example we might be attracted by a tantalizing smell and move towards it, 
since we expect a delicious food, or we move away from a place if there is a repellent 
odor. Animals and humans also use this effects (for example) to attract mating partners 
with special colorful feathers or with enticing perfumes etc. In [89, 90] one can find the 
silk moth Bombyx mori as an example of a species that uses a special odor to attract a 
mating partner. During mating season the female moth secretes a scent caused by a 
pheromone bombykol which attracts the male to move in direction of the increasing 
concentration of this scent. This helps the male moths to find the female. Before pre-
senting another example where changes in the environment affect the movement of a 
mobile species let me cite the following anecdote from the German news magazine 
"DER SPIEGEL" 36/1998 [46] that is said to have happened in the late 1950s at Prince-
ton University: 

"The genius was stunned. In the late 1950s Albert Einstein watched disbelievingly aflim of the 
young seien tist John Tyler Bonner at Princeton University. The star of the movie was an unim-
pressive tiny creature: an amoeba called Dictyostelium. . .. ) As soon as "Dicty",(...), starts to be-
come hungry it undergoes a miraculous metamorphosis.( ... ) The Dictys become one.C..)  Einstein's 
question is still unsolved: Why does Dicty undergo a deadly intermezzo as a complex multicellular 
organism to live then alone andautistically?" (Quoted from [46] translated by the author.) 

The cellular slime mold Dictyostelium discoideum was discovered by K. B. Raper in 
1935 and in the subsequent years aroused the interest of many scientists. Nowadays 
Dictyostelium discoideum is a model organism for biomedical research of the National 
Institutes of Health (NIH). One reason for the growing interest in this cellular slime 
mold was caused by the fact that "development in Dictyostelium discoideum resuits only 
in two terminal cell types, but processes of morphogenesis andpattern formation occur as 
in many higher organisms" (see [107, page 354]). This raised the hope of biologists that 
studying this cellular slime mold might aid in the understanding of the secret of cell dif-
ferentiation. But what initiates the change from a single cell organism to a complex mul-
ticellular organism? And how does this process take place? 

During its life cycle a myxamoebae population of the Dictyostelium grows by cell divi-
sion as long as there is sufficient nourishment. When the food resources are exhausted 
the myxamoebae spread over the entire domain available to them. After a while one cell 
starts to exude cyclic Adenosine Monophosphate (cAMP) which attracts the other myx-
amoebae. The myxamoebae begin to move towards the so-called founder cell and are 
also stimulated to emit cAMP. The myxamoebae aggregate and start to differentiate. 
At the end of the aggregation the myxamoebae form a pseudoplasmoid, in which every 
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myxamoebae maintains its individual integrity. This pseudoplasmoid moves towards 
light sources. After a time a fruiting body is formed and spores are spread. Thus the life 
cycle begins again. For more details on the life cycle of the Dictyostelium 1 refer to [15], 
for example. 

A reaction to an external stimulus is generaily called taxis and is then specified by 
describing the reason for the reaction. Therefore, there are many different tactical re-
sponses such as chemotaxis, galvanotaxis and phototaxis. In this article 1 will focus 011 

chemotactical movement of mobile species which can lead to various different pattern 
formations. 

Chemotaxis is the influence of chemical substances in the environment on the move-
ment of mobile species. This can lead to strictly oriented movement or to partially or-
iented and partially tumbling movement. The movement towards a higher concentra-
tion of the chemical substance is termed positive chemotaxis and the movement towards 
regions of lower chemical concentration is called negative chemotactical movement. 
Thus, the Bombyx mori and the Dictyostelium discoideum are two species that move in 
a chemotactically positive manner towards the higher concentration of the bombykol 
resp. the cAMP. The substances that lead to positive chemotaxis are chemoattractants 
and those leading to negative chemotaxis are so-called repellents. 

Chemotaxis is an important means for cellular communication. Communication by 
chemical signals determines how cells arrange and organize themselves, like for instance 
in development or in living tissues. A large number of examples for mobile species be-
having in a chemotactical manner are known. In addition to the above mentioned two 
examples, 1 would also like to draw attention to a third species, the bacterial strain Rhi-
zobia meliloti. As described in [38], this bacterial strain responds chemotactically to root 
exudates isolated from the soil of leguminous plants. The bacterial strain in the sur -
rounding soil of the plants are guided to nodules in the roots of nitrogen-fixing plants 
by a chemical gradient. Therefore, they play an important role in agricultural ecology. 

One aspect during positive oriented chemotactical movement is the formation of 
cells (amoebae, bacteria, etc) amounts during the responds of the species population to 
the change of the chemical concentrations in the environment. Such aggregation pat-
terns often require a certain threshold number of individuals. Therefore, depending on 
the case in question, that is the species being observed, such threshold phenomena 
should be reflected in the model. For example aggregation in Dictyostelium is only pos-
sible if the total number of myxamoebae in the population is larger than a threshold 
number of myxamoebae. In [26] the threshold value of 5 10 myxamoebae per cm 2  is 
given for Dictyostelium discoideum. This chemotactical effect has been observed in ex-
periments to demonstrate chemotaxis of bacteria (see for example [1201). Positive and 
negative chemotaxis can be studied in petri dish cultures. If the bacteria are placed in 
the center of the dish of agar that contains an attractant, the bacteria will exhaust the lo-
cal supply and then move outward following the attractant gradient they have created. 
This results in an expanding ring of bacteria. To demonstrate negative chemotaxis one 
can place a disk of repellent in a petri dish of semisolid agar and bacteria. The bacteria 
will then move away from the repellent. This movement away from the repellent will 
lead to the creation of a clear zone around the disk. 
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Alternatively, one can demonstrate chemotaxis by observing bacteria in the chemi-
cal gradient produced when a thin capillary tube is fihled with an attractant and lowered 
into a bacterial suspension. While the attractant diffuses, the bacteria collect and move 
up the tube. The observed positive chemotactical effect in this experiment is the forma-
tion of bacteria (myxamoebae, cells, etc.) bands. Such and similar experiments have 
been carried out for example by Adler [1]. Adler's observations correspond to the for -
mation of traveling waves and pulses that spread through the population density. Thus 
an interesting question is whether or not the mathematical models describing chemotac-
tical movement have traveling wave solutions. 

These phenomena have motivated a large number of scientists to study chemotaxis 
and to use the mathematical language to describe the observed phenomena. The inten-
tion of the present survey is to collect the resuits for a classical model describing chemo-
tactical movement, to expose the lines of research. 

The outline of the first part of this survey is as follows: 
In the second section two different approaches for modeling chemotaxis will be in-
culded. This section will also introduce the "classical" chemotaxis model by Keller and 
Segel, the center of our considerations for the remainder of the paper. The third section 
is devoted to steady-state analysis for this classical model by Keller and Segel done so 
far. lt will be shown that all the effects demonstrated in the analysis depend on the func-
tional forms of the three main processes during chemotactical movement. They are: 

a) The sensing of the chemoattactant which has an effect on the oriented movement 
of the species. 

b) The production of the chemoattractant by a mobile species or an external 
source. 

c) The degradation of the chemoattractant by a mobile species or an external ef-
fect. 

Within the context of steady-state analysis the focus will be on a linear chemotactic sen-
sitivity function but will also collect the results for different versions of the Keller-Segel 
model. When appropriate 1 will summarize results for other sensitivity functions in a ta-
ble at the end of a section. Section 4 will deal with the possibility of an explosion of the 
solution in finite time in the case of a linear sensitivity function. Here 1 point out the dif-
ferent lines of research in chronological order. This can be accomplished without losing 
clarity in the results. Section 5 addresses questions asked in [69] on the possibility of ex-
plosion of the solution in finite time in the case of a linear sensitivity function. This sec-
tion is then followed by generalizations of these results for other more general versions 
of the ciassical model in Section 6. In the seventh section of the present article 1 will pre-
sent some comparison results for some general versions of the Keller-Segel model 
proved by Wolfgang Alt in his Habilitation [3]. This section, however, will be somewhat 
technical. At some places in the text questions will be formulated that arise from the re-
sults stated in the article. These questions are partially answered in subsequent sections, 
but some are still open problems and might be worth further study. 1 will dose this first 
part of the summary of results for the Keller-Segel model with some brief comments on 
other approaches and models for chemotaxis. 
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In the second part of this survey [67a] 1 will turn to special solutions for the Keller-
Segel model in chemotaxis. lt will summarize the results on self-similar and traveling 
wave solutions for this classical chemotaxis model. The outline of [67a] is as follows: 

After a short introduction 1 will turn to the results on self-similar solutions. Then 1 
will go a bit more into detail on traveling wave solutions for Keller-Segel type systems. 
Known results will be presented and discussed. Furthermore 1 will discuss which func-
tional forms for sensing, producing and degrading the chemoattractant might cause 
resp. favor the existence of traveling wave solutions. 1 will also sketch some results 011 

traveling front solutions for a chemotaxis system with population growth. Finally 1 will 
dose this summary of resuits for the Keller-Segel model with some brief comments. 

2 Ditterent perspectives to model chemotactical movement 
and the form ulation 01 the ciassical chemotaxis equations 

Modeling chemotactical movement of mobile species can be done from two different 
perspectives: either from the microscopic or from the macroscopic perspective. Both ap-
proaches have been used over years and the derivation of the macroscopic equations 
from the microscopic, or to be precise the validation of the passage to the limiting equa-
tions is still a topic that is studied by a large number of scientists and depending 011 the 
model is still an open problem. 

2.1 The macroscopic perspective 

The first approach that should be presented here is the macroscopic perspective where 
one considers the whole population respectively the density of the population at one 
place and one time directly. This approach leads to a continuous reaction-diffusion 
model where the diffusion of the population density is modeled with Fourier's and 
Fick's laws and in which the reactions are viewed as functions of the population density 
and possibly some external signal or control substance. 

In the year 1970 Evelyn Fox Keller and Lee A. Segel used this perspective to present 
a system of four strongly coupled parabolic partial differential equations, which de-
scribes the aggregation of cellular slime molds like the Dictyostelium discoideum. Let 
u(t, x) denote the myxamoebae density of the cellular slime molds and v(t, x) denote a 
chemoattractant concentration at time t in point x. To model the aggregation of a cellu-
lar slime mold population they assume in [71] the following basic processes that take 
place during the aggregation phase: 

(a) The chemoattractant is produced per amoeba at a ratef(v). 

(b) There exist an extracellular enzyme that degrades the chemoattractant. The con-
centration ofthe is enzyme at time t in point xis denoted byp(t,x). This enzyme 
is produced by the myxamoebae at a rate g(c,p) per amoeba. 
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(c) The chemoattractant and the enzyme react to form a complex S of concentration 
which dissociates into a free enzyme plus the degraded product. 

r 1  

v +p SOp  + degraded product 
r_ 

(d) The chemoattractant, the enzyme and the complex diffuse according to Fick's 
law. 

The balance of the myxamoebae density u(t, x) in any control volume D (which holds 
for example in the special case of Dictyostelium discoideum aggregation) implies the 
equation 

(1) fu(t,x) dx 
	
(J(u)(tx)  n(x))dS. 

dt 

Here j(u) (t, x) denotes the flow of the myxamoebae density. This flow contains accord-
ing to Fick's law a part that is proportional to the density gradient and according to 
Fourier's law for the heat flow a part that is proportional to the chemoattractant gradi-
ent. Thus we see that: j(u) (t, x) = k27v - k1 Vu. As a chemical substance the chemoat-
tractant diffuses and we get 

(2) v(t,x) dx = Q(t,D) 
- f 

(j(v)() n(x))dS, 
dt 

where Q(v) (t, D) denotes the produced chemoattractant v(t, x) per domain and time vo-
lume. The flow j(") (t, x) is given by: j(v) (t, x) = —kVv. Assuming the analogous equa-
tions for the enzyme and the complex, and taking the basic processes into account we 
derive at the following System: 

UI = 	V(k i (u, v)Vu - k2(u, v)Vv), x e 9, t> 0 
V t  kzv—rivp+r_i'q+uf(v), xe, t > 0 
Pt = 	k4p - r1vp + (r_i  + r2) 	+ ug(v,p), x e 9, 1> 0 

(3) 77t = 	kL'r + rivp - (r_1 + r2 )77, x E 9 , t > 0 
Du/an = 	Dv/Dn = Dp/Dn = D/Dn = 0, xeDl, t>0 
u(0,x) = 	uo(x), v(0,x) = 	vo(x), xEl, 
p(0,x) = 	po(x), 	(0,x) = 	i o (x), 

where r_1, rl and r2 are constants representing the reaction rates mentioned in assump-
tion (c). Here 9 denotes a bounded domain in IRN  with boundary Dft 

Let us simplify the chemical processes in the life cycle via assuming that the complex 
is in a steady state with regard to the chemical reaction and that the total concentration 
of the free and the bounded enzyme is a constant. Thus one gets a simplified formula-
tion of this original Keller-Segel model that has already been proposed by E. F. Keller 
and L. A. Segel themselves to reduce their original system of four strongly coupled 
parabolic equationS to a model that is as simple as possible. Thus their motto that "it is 
usefulfor the sake of clarity to ernploy the simplest reasonable model" (see [71, page 403]) 
leads them to the following system of "only two" strongly coupled nonlinear parabolic 
equationS: 
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u 1 	= V(k i (u, v)Vu - k2(u, v)Vv), x E Q, t> 0 

(4) 
V t 	kLv - k 3 (v)v + uf(v), 	x E ‚ t > 0 

0u/0n = 	Dv/ön = 0, 	x E 8, t > 0 
u(0,x) = 	uo(x), v(O,x) = vo(x), 	xft 

However, it might be necessary to remember the original system if one tries to describe 
certain pattern formations during the aggregation of some particular species. lt is possi-
ble that the reduction to two equations that was done in [71] was too restrictive to cover 
all observable generated patterns during the aggregation of mobile species. 

2.2 The microscopic approach 

From the microscopic perspective one interprets the movement of species populations 
as a consequence of microscopic irregular movement of single members of the consid-
ered population that resuits in a macroscopic regular behaviour of the whole popula-
tion. This then leads in a parabolic limit to reaction-diffusion processes, however, in this 
case the passage to the continuum limit of the microscopic problem and thus studying 
the resulting, continuous partial differential equations has to be valid and justified. 
Usually it is assumed that in a particles population each single particle moves around in 
a random walk. Leaving the justification of the limiting process open, this approach 
gives us at least a formal way to derive reaction-diffusion processes from the micro-
scopic point ofview. 

For example in [116] H. G. Othmer and A. Stevens used the microscopic perspective 
and started with a continuous-time, discrete-space random walk for a single particle in 
one space dimension. Restricting themselves to one step jumps and assuming that the 
conditional probabilityp 1 (t) that a walker is in i e 71 at time t - conditioned on the fact 
that it begins in i = 0 at t = 0 evolves according to the continuous time master equa-
tion 

(5) 19P1= T 1 (W) 	+ T 1 (W) p - (T(W) + T/(W)) 
9t 

Here T(.) are the transition probabilities per unit time for a one-step jump to i + 1, 
and (t ( W) + T/ ( W)  ) -' is the mean waiting time at the ith  site. lt is assumed that 
these are nonnegative and suitably smooth functions of their arguments. The vector W 
is given by W = (. ‚ w__ 112 , w_, W_i+l/2, ‚w 0 , w 1 1,• •). For generality and in con-
text with a self-attracting reinforced random walk analyzed by Davis [28] the density of 
the control species w is defined on the embedded lattice of half the step size. As (5) is 
written, thejump probabilities may depend on the entire state and on the entire distribu-
tion of the control species. Since there is no explicit dependence on the previous state 
the process may appear to be Markovian, but if the evolution of w, depends on p, then 
there is an implicit history dependence, and thus the jump process by itself is not Mar-
kovian. However, the composite process for the evolution (p, w) is a Markov process. 
There are three distinct types ofmodels that are considered in [116], which differ in the 
dependence of the transition rates on w: (i) strictly local models in which for example 
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are equal, (ii) barrier models in which for example T( W) = 7- (w±112), and (iii) 
gradient models for example with 7- 1 (W) = o + ß(r(w 1 ) - r(w 1 _ 1 )) and T 1 ( W) = 
a + /3(T(w) - 7- (W+1)) for ce > 0 and a function y ofthe control substance. 

Considering a grid of mesh size h and setting x = ih the formal expansion of the 
righthand side of equation (5) as a function of x to second order inh leads 

1. in case (i) to 

- h2 	(Y(w)p) + 0(h 4 ) 

8t 	9x2   

and so with an assumed scaling
uO)s—O

m )h2  = D, where .\ has dimension t - ', to 
the limiting problem 	h-. 

 

ap = D---(T(w)p), 
9t 	ax2  

2. in case (ii) with the same scaling to 

ap =D(T(w)), at 	8x 	ax 

3. and in case (iii) once again with the same scaling as before to 

1. 
awy C9t 	ax IP  G2  49x  ax] 

Assuming various possible evolution equations of the control substance w this leads 
formally from a random waik of a single particle to a limiting diffusion equationfor the 
probability of one particle to be located in x at time t. Of course one can also study these 
equations as an ad hoc approach for particle densities, but their derivations are then 
only formal approaches and by far not rigorous. The key problem to derive the limiting 
equations from the multi particle random walk is the interaction of the particles via the 
control species. A rigorous derivation of limiting equations in these cases is not done 
yet. Simulations ofthese are presented in [116] and [141]. 

The first rigorous derivation of chemotaxis equations from a microscopic model, 
namely an interacting stochastic many-particle system, has been done in [139] and [143]. 
In [143] Stevens proved that for large enough particle numbers the dynamics of the be-
bw given interacting particle systems are well described by the solution of chemotaxis 
systems which for this case describe population densities. Explicit error estimates are 
also given. For the derivation it was assumed that every particle interacts mainly with 
those of the other particles which are located in a certain neighbourhood of itself. The 
neighbourhood is macroscopically small and microscopically large. As a consequence 
the interaction range between the particles is shrinking as the number ofparticles goes to 

‚ while the number ofparticles in the shrinking neighbourhoods is also growing to oc. 
So let the subscript u mark the terms related to bacteria and the subscript v mark the 

terms related to the chemical substance slime particles. Let S(M, t) = S(M, t) 
+ S(M, t) denote the set of all particles in a M-particle system. the particles are num-
bered consecutively by taking a new number for each new-born particle. P(t) e JRd, 
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k e S(M, t) describes the position of the kth particle at time t > 0. Furthermore let & 

denote the Dirac measure at x e 1W', d e N. Stevens considered the following measure 
valued empirical processes: 

t H-4 SM(t) 
- 1 	

öpk(,) 
Mk s ( M ) 

1 
t i-4 S1(t) = 	6P(t) and 

kES 1 (M,t) 

SM(t) = SM(t) + SM(t). 

The dynamics of the particies depend on the following smoothed versions of SM, SM Y : 

SM = (SMU * WM * W'M)(x), SM = (S M, * WM * WM)(x) 

where WM and WM are moderately scaled functions of a fixed symmetric function W i  
(e.g. a Gaussian): WM = MW i (Ma/'x ) and WM = MW 1 (M/d x ), where ce and & 
are constants that for technical reasons have to fulfihl certain smallness conditions (see 
[143, page 4]). Setting up the corresponding Fokker-Planck equations for each particle 
and taking the particle interaction into account she ends up with the following equation 

(6) dP(t) = XM (t, P(t)) VM V  (t, P(t))dt + /iidWk(t), 

where Wk(.)  are independent 1W-va1ued standard Brownian motions, p> 0 is a con-
stant and XM(t,x) is given by the equation XM(t,x) = x(M(t,x),M 1 (t,x)) with a 
smooth function x: fl+ x IR± fl + 

Under some technical assumptions she ends up with the weak formulation of the 
ciassical chemotaxis system 

{

u1  = V(aVu - x(u, v)uVv) 
V 1  = 77L.v - y(u, v)v + [3(u, v)u 

where SM - ii, S - v as M - 00 in probability, ij > 0 is a constant and 'y(.,-)  and 
are smooth, positive functions on IR x JR. The derivation of the limit dynamics 

is done by extensions of techniques used by Oelschläger [112]. For further resuits on 
these aspects we refer the interested reader to [116, 142, 139, 140] and [143]. 

Another paper that should be mentioned in the context of the derivation of the Kel-
1er-Segel equations as a model for population densities from the kinetic equations is [4]. 
Denoting the density of individuals moving at (t, x) in direction 8 and having started 
their run at time i-  by a smooth function o- (t, x, 9, -) W. Alt started in [4] with the differ-
ential-integral system 

(7) a(t, x, 6,r) + 	a(t, x, 6,7- ) + 9V(c(t, x)a(t, x, 9,)) = —ß(t, x, 6, T)a(t, x, 9,7 - ) 

for r> 0, 0 e S"' (= the unit sphere in n-dimensional space), and speed c(t, x) of an in-
dividuum from the beginning of the run that stops at time t and point x, with a given 
probability 3(t, x, 8, r) per unit time. Here we have that 

= f f ß(t,x,0,)a(t,x,0,)k(t,x,0,) d9 d 

0 
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for each 77 E SN,  where k(t, x, 0,17) denotes the given probability of a new chosen di-
rection 77 after an individuum has stopped a run with direction 0 at (t, x). W. Alt shows 
that under some additional boundedness assumptions and hypotheses relating the size 
of some appearing parameters the density 

	

ü(t, x) := f 	(t, x, 0) dO 
= f (12,c 

a(t, x, 9,) d)dO 

	

SN1 	 SN1  

satisfies the first equation of the Keller-Segel mode!. 
Last but not least 1 should mention the resuits from C. S. Patlak [118] in this section. 

In his paper from 1953 C. S. Patlak derives the partial differential equation of the ran-
dom walk problem with persistence of direction and external bias. Here persistence of 
direction or internal bias means that the probability a particle travels in a given direc-
tion is not necessarily the same for all directions, but depends only on the particle's pre-
vious direction of motion. External bias means that the probability a particle travels in 
a given direction is dependent upon an external force on the particle. However, instead 
of speaking of the probability that a particle is at a point, Patlak speaks of a large num-
ber of particles moving around and therefore of the density of the particles about a 
point as a measure of the required probability. Thus in his picture of a random waik he 
speaks of a particle traveling in a straight line for a certain length of time T with an aver-
age speed c before turning, where the turning means a change in direction of the parti-
cle's motion. To make the idea of a random waik completely explicit - as opposed to 
diffusion - Patlak assumes that the particies have negligible interactions with each other 
and thus collision between the particles can be ignored. So let me list up the assumptions 
that Patlak uses throughout his paper: 

1. The particles have negligible interaction with each other. 
2. Each time the particle turns it start off afresh, with no "memory" of its previous 

cand y 
3. The amount of time spent in turning is negligible compared to the time the parti-

cle spends traveling between turns. 
4. During a unit length of time the number of particles in each small reagion, as 

well as the distributions of c and remain approximately the same. 
For the net displacement of a particle Patlak assumes that the probability of travel 

in any direction after turning and the distance of travel in a given direction are not ne-
cessarily the same for all directions. Now using the assumptions above he derives a 
modified Fokker-Planck equation. From this the partial differential equation for the 
random walk with persistence and external bias is obtained, which is more or less the 
first equation of the Keller-Segel mode!. Even though these results by Patlak are older 
than the paper by Keller and Segel system (4) is known as "the classical chemotaxis mod-
e!" resp. as "the Keller-Segel model in chemotaxis". 

Since it is not the goal of the present paper to go into the precise details of the deriva-
tions and approaches of[4, 116, 118, 1391 and [142] we now leave this topic of the differ-
ent possibilities to model chemotaxis and move to the main goal of the present paper, 
namely a review of the achieved results for system (4) which as we have seen - can be 
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derived from the macroscopic and microscopic perspective on chemotactical move-
ment. 

3 Linear stability analysis for the uniform distribution and nonconstant 
steady state solutions 

Studying the steady state problem of the mode! (4) is already a challenging mathemati-
cal problem, showing a large variety of interesting aspects and uses a lot of astute math-
ematical techniques. Some tools used for the steady state analysis for the Keller-Segel 
model performed until now were techniques from the caiculus of variations to show the 
existence of nonconstant stationary solutions and the existence of spike solutions. One 
tool used in this context is for example the mountain pass theorem by Ambrosetti and 
Rabinowitz [146, Theorem 6.1., page 1091. But let us proceed step by step to illustrate 
the way ofprogress on this topic. 

In their paper from 1970 E. F. Keller and L. A. Segel studied in the case oftwo spa-
tial dimensions the stability of a uniform state (UQ, Vo)  for the species and the chemica! 
attractant. Studying the effect of small (time dependent) perturbations of these uniform 
distributions they found by Taylor expansions in u and v of the right hand sides of the 
equations in (4) around the uniform state the following instability condition. The Uni-
form distribution is unstable if 

k,(uo,vo)f(vo) 	
+ 	

uof'(vo) 	
> 1 

k i (uo,vo)(k3(vo) + vok(vo)) 	k3(v0) + vok(vo) 

or equivalent if 

k7(u o . vo)vo + 
	

uof'(vo) 	
> 1 

	

ki(uo, VO)UO 	k 3 (vo) + vok'3 (vo) 

since a uniform state (uo , vo ) satisfies the equality uo f(v o ) = v0k 3 (v o ). Here Keller and 
Segel call the uniform solution stable if the time dependent perturbations of the uniform 
distribution decrease with time. On the other hand they call the uniform distribution 
unstable, ifthese perturbations lead to solutions of(4) that increase in time. 

Even though Keller's and Segel's stability analysis of the uniform state in [71] and the 
presented instability criterion is valid for a very general formulation of the system, the 
next "landmark" in the studies of the Keller-Segel model was the paper by V. Nanjun-
diah [106]. In that paper Nanjundiah performs a non-linear stability analysis for some 
versions ofthe Keller-Segel model in space dimension N = 2. In a linear stability analysis 
he first re-derives the instabi!ity criterion for the uniform distribution of myxamoebae 
and cAMP. Then his non-linear stability analysis for the System given by the equations 

u1 	= 	V(Vu - uV(v)), 	x e 2, t> 0 
Vt 	= 	kv—'yv+ou, 	xE, t>0 

	

= 	Dv/Dn = 0, 	x e 0, t> 0 
u(0,x) = uo(x), v(0,x) = vo(x), 	x e 9, 

where k, 'y,  a are positive constants strictly larger than zero and (v) denoting a che- 
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rnotactical sensitivity function, leads hirn to one key staternent that is mentioned in 
[106, page 102] for the case of a linear or a logarithmic chemotactical sensitivityfunction 
I(v). He states the following: 

"The end-point (in time) ofthe aggregation is such that the cells are distributed in theform of 6-
function concentrations." 

We want to sketch Nanjundiah's arguments leading to the above expectation for the 
case of a linear sensitivity function. So V. Nanjundiah considered in this case the follow -
ing steady state system: 

(0 = V(Vu—uVv), 	xe, 
(9) 	0 = 	.v—v+u, 	xe2, 

1 0 = au/an = av/an, . E l%1. 

For a general solution (u, v) of this systern we see that the rnean values over 9 of u and v 
are equal to the same constant. The first equation of (9) motivates us to define a new 
function L(x) by u(x) = /(x)e (-) . In general is strictly positive and only at those 
points equal to zero, where u is equal to zero. We now conclude from the first equation 
that 0 = V(Ve) and therefore 0 satisfies the equation Lb + VVv = 0 in 9 c 1R2  
with Neumann boundary data at 09. If we restrict ourselves to functions (u, v) that are 
both finite everywhere we see that 0 = ue'. However the equation for / implies that 
this function cannot attain a critical point in 9, since at such a point the gradient 
vanishes and Ae would be either strictly positive or strictly negative. According to the 
boundary conditions Hopf's maximum principle [31, Hopf's Lemma, page 3301 implies 
that e is equal to a constant. Thus u(x) = const . ev(x) .  This however implies that u and 
v attain their extrema at the same point in 9, since u is a monotonic function of v and as 
a consequence frorn the first equation of (9) we see that Vu - uVv = 0, i.e. the popula-
tion current vanishes everywhere in fl. A result, independent frorn the reaction terms of 
the second equation. 

However this result contains the assurnption that the functions u and v are finite 
everywhere in 1 and therefore L' is finite in 2. So if the time dependent equations de-
scribe aggregation, such an assumption then has to break down in the points where the 
aggregation takes place, i.e. in the aggregation centers. From the fact that for the time 
dependent problem the L'-norm ofthe solutions is uniformly bounded by the L'-norm 
of the initial data we see that the set of points where aggregation takes place has to be a 
set ofmeasure zero. 

In [106] V. Nanjundiah also elaborated the fact that the singularities can only be of 
8-function type. Therefore he remarked that the trivial solution satisfies the equations 
(9) pointwise. The mass condition on the solution can only be satisfied if the solution 
has singularities. Since we have from the previous arguments that u = Ke' we get for v 
the problem /v + K&' - v = 0 with homogeneous Neumann boundary data on 
From this equation one can derive all possible steady state solutions. Furthermore a 
uniform solution v const =: L always exists, where L is defined by the mean value of v 
over ft 
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Figure 1: The connection between the values of the constants K and L. 

Figure 1 shows the connection between K and L. We see that possible non-constant 
steady state solutions can have values of K in the range of the interval [0, Le_L].  For 
K = 0 there are two possible values, namely L = 0 and L - . 

Furthermore V. Nanjundiah showed that all solutions between the one with K = 0 

and the uniform solution are unstable if the uniform one itseif is unstable by imposing 
small time dependent fluctuations on an arbitrary solution at time t = 0. In view of (8) 
the uniform solution is unstable ifu = v = vo  with v0  > 1 is true. 

Nanjundiah's paper was followed by two papers which contain conjectures for the 
asymptotic behaviour of the solution of the Keller-Segel model for the space dimensions 
N = 1, N = 2 and N > 3. In [24] S. Childress and J. K. Percus pointed out that the ar-
guments used by V. Nanjundiah are independent of the dimension of space in which ag-
gregation occurs. However they showed that singular behaviour ofthe solution is in fact 
a phenomenon that is space dependent. In their paper they restricted themselves to the 
(as they called it) minimal system given by the equations 

f 

	

u t 	V(Vu—uVv), 	xeQ, t>0 

l0' 

 

	

V t 	kzv - v + cu, 	x E ‚ t > 0 

	

) 0 	= 	0u/0n = av/an, 	x eae, t> 0 
u(0,x) = uo(x), v(0x) = vo(x), 	x 

which (as mentioned before) is due to some simplifying assumptions done by V. Nan-
jundiah in [106] and is nowadays the most common formulation of the chemotaxis 
equations. Their studies and their performed asymptotic expansion analysis (see [24, 
page 236-237]) lead to the following possible time asymptotic behaviour for the solu-
tion of system (10): 

"In particular, for the special model we have investigated, collapse cannot occur in a one-dimen-
sional space; may or may not in two dimensions, depending upon the cellpopulation; and must, we 
surmise, in three or more dimensions ander aperturbation of sufficiently high symmetry." 
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Here Childress and Percus refer that aggregation proceeds to the formation of 5-func-
tions in the cell density as chemotactic collapse. Their analysis and conjecture for N = 2 
and 9 a disk was confinned by the result in [25], where S. Childress gives an asymptotic 
expansion describing the imminent collapse of a radially symmetric aggregate of chemo-
tactic cells. However the studies of the stationary problem continued independently 
from this conjecture and the report an the time independent problem should be closed 
first until the time asymptotic behaviour of the solution of (10) becomes the main sub-
ject of the present considerations in the upcoming sections. 

The papers by Childress and Percus were followed by the studies of stationary solu-
tions done by R. Schaaf. In [128] she analyzed solutions ofthe system 

0 	= 17(ki(u,v)Vu—k 2 (u,v)7v), x E ‚ t>0 
0 	= 	kLv+g(u,v), 	xE, t>0 

	

au/an = 	 Dv/Dn = 0, 	x e D1, t > 0 

	

u(0,x) = 	uo (x), v(0,x) = vo(x), 	XEQ. 

with general nonlinearities satisfying the conditions 
1. 2 c IR N  is a bounded open region with smooth boundary. 
2. k 1 , k2  : 	x 	are twice continuously differentiable and the ODE 

d —r(s) = k2 (r,$)/k i (r,$) 
ds 

has a unique solution r 	- IR for any initial condition r(so ) = r0 , 
s0 ,r0  e IR+ .  

3. g: 	x 	-* lRistwicecontinuouslydifferentiableandg - '({O}) 7~ 0. 
via bifurcation techniques. Furthermore a criterion for bifurcation of stable nonhomo-
geneous aggregation patterns is given. In [128] R. Schaaf focused an the properties of 
stationary solutions of the Keller-Segel model with homogeneous Neumann boundary 
data in a very general setting. She shows that the stationary problem of the Keller-Segel 
model in a more general setting than the cases studied by V. Nanjundiah can also be re-
duced to a parameter-dependent single scalar equation. More precisely she shows the 
following theorem: 

Theorem 1 (Schaat) A pair (u,v) e{we X 1 w() c IR} x {wE X 1 w(n) c 
1R}isaso1utionof(11)(fffor.\ c IRt 

(12) u(x) = o(v(x), )) for all x e Q and k/v + g(c(v(x), )' v) = 0. 

Here the space X is defined as {w e Z 1 Dw/8n = 01 where 2 is the space 
C2 (fl, IR) with 0 < ß < 1 for N> 1 and C2 (, IR) for N = 1. The function (s, .X) is 
given by r(s) with 

d —r(s) = k2 (r,$)/k i (r,$), r(1) =  A. 
ds 

Then bifurcation methods are used in [128] to find natural bifurcation points. Further -
more R. Schaafgives a stability analysis for the constant stationary solutions ofthe Kel-
ler-Segel model. 
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For ki(u, v) = 1, k2(u, v) = xu and g(u, v) = —yv + au the stationary solutions of 
the Keller-Segel model solve the equation 

(13) kLv-7v+a)exp(v) = 0 in Q 

with homogeneous Neumann boundary data. Ofcourse the question of positive, nontri-
vial solutions for this equation arises. The existence of nontrivial radially symmetric so-
lutions for this equation has been shown in [11, Proposition 1] under the assumption 
that -y> 0, but Biler did not consider the nonsymmetric case (The Neumann boundary 
data implies that there are no solutions provided 'y = 0.). 

Using variational techniques introduced by M. Struwe and G. Tarantello in [147] J. 
Wei and G. Wang [153], T. Senba and T. Suzuki [133, 134] and in [63] myseif proved for 
Q c JR2  independently the existence of nontrivial solutions of (13) without symmetry 
assumptions for 47r < a)/kc. The existence of nontrivial solutions of (13) in the case 
that a)/k <4ir foliows from arguments that will be mentioned later in the present 
paper. 

The idea of the existence proof is based on the studies of the functional 

	

+ v2  dx - 	log (/ e v dx) 

where v e D := {v E H 1 (Q) 1 v has mean value equal to zero over Q}. One easily no-
tices that v 0 is a strict local minimum for .FQ),/kC  in the case that 

7> 	- 

where bti is the first (non zero) eigenvalue of the Laplacian with homogeneous Neu-
mann boundary data. Then one recognizes that for a smooth domain 9 and 
a.\> 4k7r there isa sequence {v} >0  c 73 with 

	

(__________ 	1 r ( v(x) =logi 	 1 - 	i logi 	 i dx 

	

(a2+xxo2)2 	
E2  

) 	J 	2+xxo[2)2) 

where x0 is an arbitrary point on 9, such that 

	

- oc  and HVVHL2(Q) 	oo as E 0. 

As a consequence there exists a v o  e 73 such that 

	

<vxi c (vü) <0 and VotH1(o) 	1. 

One now defines 

{p: [0,1] - 7) 1 p is continuous and p(0) = 0, p(l) = vol 

and sets 

k( x /k C 	inf maxJ „„,\/k,(P(t» 

JB 105. Band (2003), Heft 3 	 117 



Übersichtsartikel 	HistorischerArtike 	Buchbesprechungen 

for all c)/k > 4r. Using the fact that the mapping 
k , k ,~, 1\Ikc  
aXA 

is monotone decreasing for all c)/k. > 4r we see that it is differentiable for almost 
every aA/k > 471- . The rest of the proof then consists of the construction of a Palais-
Smale sequence for Jx/kc  that contains a subsequence that converges strongly in 
H' 

() 
to a critical point of Fx/k.  The construction of the Palais-Smale sequence can 

be done exactly as in the paper by M. Struwe and G. Tarantello [147]. The existence of 
the nontrivial critical point of the Functional over the set D allows us to con-
clude the existence of a nontrivial solution of equation (13). This can be seen easily. If 
one introduces the new function 

w xv 
- 	

v dx 

we get from (13) the Euler-Lagrange equation of the minimizing problem inf 	(v) 
over the set D. Thus the existence of a nontrivial critical point of the functional gives us 
also the existence of a nontrivial steady state solution of the Keller-Segel model with a 
linear sensitivity function. 

With different methods than those just mentioned Y. Kabeya and W.-M. Ni also 
proved the existence of positive nontrivial stationary solutions of (13) in [70]. Further-
more they showed the following result: 

Theorem 2 (Kabeya & Ni) Let 9 c 1R. Suppose that t = ) eXt has two positive solu-
tions. Then there exists a non constant solution v E  of(l 3) provided 

6 := 

is sufficiently small. Moreover, there exist constants C 1  > 0, C2  > 0, 6 > 0, K> 0 and 
6 > 0 such that: 

supv < Cl , infv < C2e and 1 (EI ,7vJ2 +yv)dx > K 

for any 0 < 6 <Eo. Furthermorefor sufficiently small 6 > 0 the solution v E  has exactly 
one local maximum point in 9 , which must lie on the boundary 0. 

This theorem is similar to results that have been established for the stationary Kel-
ler-Segel model with a logarithmic chemotactical sensitivity. In this case the transforma-
tion introduced by R.Schaaf in [128] leads to the problem 

(14) dw—w+w=0, inwith0w/0n=0, on3l. 

In [83, 108] and [109] the authors prove the existence of stationary solutions of this 
equation for 9 c IRN  with N > 2 and 1 <p < (N + 2)1(N - 2) if N > 3 and 
1 <p < 00 ifN = 2. Their results for this problem can be summarized as follows: 
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Theorem 3 (Ni & Takagi) Let wd be a least energy solution of (14), je. a critical 
point of 

Jd(V) := / (dVv2 + v 2) _±v 1 dx 

such that 

Jd(Wd) = cd where cd := ulf max Jd(h(t)), 
hEI' O<t<1 

in which 

F := {h e C([0, 1];  W"2 (2)) j h(0) = 0,h(1) = e} 

ande 0 isa nonnegativefunction in W 12 () with Jd(e) = 0. Then wd has at most one lo-
cal maximum in 0 and this is attained in exactly one point which must lie on the boundary, 
pro vided that d is sufflciently small. If Pd E a9 is the unique point at which max Wd is 
achieved. Then 

limH(Pd ) = maxH(P) 
PEOQ 

where H(P) denotes the mean curvature ofaf at P. 
Of course many generalizations of this result have been published in the recent years 

(see for example the papers by [47] and [123]), but it is not the goal ofthe present paper 
to mention all these results. Therefore 1 leave this to the interested reader and turn now 
to the time dependent problem. However it is recommended to recall the presented re-
suits when looking at the time asymptotic behaviour of the solution in the upcoming 
section. Recalling the resuits of the present section will help to understand the resuits 
for the time asymptotics of the solution and will heip to understand which behaviour 
one might expect for the solution. Before we now definitively turn to the time dependent 
problem let us explain some terms used in the present section. We have seen that there 
are different effects that one can expect. In some cases we spoke of aggregation and in 
other cases of a special form of aggregation namely the formation of 6-singularities. 
This was sometimes called chemotactical collapse. Before we turn to the time dependent 
model we therefore now introduce three important effects in the mathematical lan-
guage. 

Definition 1 Let (u(t, x), v(t, x)) be a solution of (4) for the corresponding initial 
data (uo (x), v o (x)). We say that the model describes aggregation, (1' 

lirninfHu(t, )L) > 

and u(t,.) L () <konst for all t. The solution blows up resp. is a blow-up solution (f 
or v(t, )HLOC(o) becomes unbounded in eitherfinite or infinite time, i.e. 

there exists a time T max  with 0 < Tniax  < x such that 

limsup u(t, )Lc(0) = CX) or limsup 11  v(t,  )HL(n) = 00. 
t—+ Tniax 	 t—'T riax  

We will speak ofchemotactical co!!apse (1' limsup u(t,.) L(Q) < uo(.) IL(0) 
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Remark that this definition is almost identical to that given in [116] beside the differ-
ence in the allowed blow-up time for a blow-up solution. Furthermore remark that the 
three cases do not exclude themselves, i.e. more than one case can happen for the same 
solution. At the end of this section let us summarize the mentioned resuits in the follow-
ing table: 

Table 1: Collection of resuits for the stationary Keller-Segel models. 

Observation 	 References 

For mode! (4) the uniform distribution (uo, vo)becomes unstable if 	[71] 
k2(up,'p)p) +

> i k1(u0,r0)u0 	k3( ,0)+v0k(v0) 

All solutions between the one with K = 0 (as defined in this section) 	[106] 
and the uniform solution are unstable if the uniform one itseif is. 
unstable. 

The stationary problem of the Keller-Segel model can be reduced 	[106, 128] 
to the parameter-dependent single scalar equation (12). 

There exist non-constant stationary solutions of the Keller-Segel 	[11,63,70, 83] 
model for example for a linear and for a logarithmic chemotactical 	[108, 109, 133] 
sensitivity function. 	 [134] and [153] 

4 The time dependent problem: 
The case of a linear chemotactical sensitivity 

The conjectures and observations by V. Nanjundiah, S. Childress and J. K. Percus have 
been the initiating motivations for a large number of researchers to study the time 
asymptotic behaviour of the solution of the system (10). There is still an avalanche of 
publications running and 1 am pretty sure that by the date of publication of the present 
paper the number will have increased once again. Parallel to the resu!ts of this section 
various papers were published in which versions of the Keller-Segel model with a differ-
ent chemotactic sensitivity function were studied. 1 will mention these resu!ts in an up-
coming section. Thus we will only focus 011 results for (10) in this section resp. the up-
coming subsections. 

4.1 Early resuits on the time asymptotics and conjectures 

The first step in the analysis of the conjectures by Childress and Percus has been done 
by W. Jäger and S. Luckhaus in 1992. In [69] they introduced the transformation 

U(t,x) 
._ 	

u(t, x) 
and V(t, x) := v(t, x) 

- 	
v(t, x)dx 

 fu(t,x)dx 
0 

which leads to the system: 
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= 	V(VU—UVV), 	xf,t>O 

15 	
-(V+7V) = 	LV+-(U-1), 	xe, t>Oke 

= 	aV/an = 0, 	XGOQ, t> 0 
U(0,x) 	= Uo (x), V(0,x) = Vo (x), 	xe. 

Jäger and Luckhaus then assume that a = ke /3, the constants X , k, a are of the order 
with s small and 'y and 3 are of order 1. Thus they get for small E resp. for s - 0 the Sys-
tem 

U 	= V(VU—UVV), xeQ,t>0 

(16) 	
= 	V+-(U-1), 	xe, t>0 kc  

aU/an = 	aV/an = 0, 	x E OQ, t>O 
U(0,x) = 	Uo (x) 	 x Ei Q.  

Their result in space dimension N = 2 for System (16) is summarized as foliows: 

Theorem 4 (Jäger & Luckhaus) Let 9 be a bounded open Set in 1R2 , 99 is a C1  - 
boundary, (Jo(x) is C l  andsatisfies the boundary condition. 

1. There exists a critical number c(l) such that /3Uo (x) < c(l) implies that there 
exists a unique, smooth positive solution to (16)for all time. 

2. Let 9 be a disk. There exists a positive number c with the following property. If 
3Uo (x) > c then radially symmetric positive initial values can be constructed 
such that explosion of U(t, x) happens in the center ofthe disk infinite time. 

Here the notation Uo (x) is used for the mean value of Uo (x) over the domain 9 . More 
precisely Jäger and Luckhaus show the following Proposition which implies 1. of the 
previous Theorem 4. 

Proposition 1 (Jäger & Luckhaus) Let 9 be a domain satisfying the smoothness as-
sumptionsfrom the Theorem above. Let U(t, x) be a smooth positive solution to (16) and 
t the maximal time of existence, 0 < t < x. There exists apositive number c 1  (l) such 
that t <00 implies 

um 	ßxUo(x)f(U(tx) —k)dx> c j (Q). 
k- 

0 

Proposition 1 is shown by multiplying the first equation of(16) with = (U - 
where k> 0 and m> 1. Then the second equation of(16) aliows to estimate the term 

-f UVVV(U - k) 1 dx = - / VVV(m1 (U - k) +k(U k)')dx 

from above by 

c(k, m)f(U_k)dx. 
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If the statement of Proposition 1 did not hold this estimate would allow us to find the 
following inequality 

ät 
f(u - k)dx < c2(,k) + c3(k)f(U - k)dx für all t> t1 

which would give us a bound for the Lm-norms of U(t, x) and the global existence 
would follow by standard regularity arguments für solutions of elliptic and parabolic 
equations. 

For the proof of the blow-up statement 2. of Theorem 4, W. Jäger and S. Luckhaus 
studied the function 

M(t,p) 	f(U(t,r) - l)r dr für r = x, 0 < p < R. 

Using the equations of (16) they found that M(t, p) has to solve the following initial 
boundary value problem: 

= 4pM+ Uo(x)—M +/3Uo(x)M, 

with 

M(0,p) = f(Uo(r) - l)r dr and M(t,0) = M(t,R) = 0. 

Constructing a subsolution W(t, p) for this problem such that W(t, p) <M(t, p) für all 
t, p and 

hrn supW(t,p)>w>0 
(=Tfinite  P<f 

für each € > 0 they proved that the solution has to blow up at time T.pnjf e  in the center of 
the disk. Furthermore Jäger and Luckhaus asked für more information about the blow-
up behaviour ofthe solution of(16). In a remark [69, page 8201 they formulated the fol-
lowing questions: 

"lt would be interesting to know more about the Set of explosion points at t. The solution may 
giobaily exist as weak solutions. The development ofsingularities after afinite time t' is another 
important topic to be studied." 

Even though it was not the next paper in the chronology 1 now mention the results 
from M. A. Herrero and J. J. L. Velszquez [50] from 1996 and M. A. Herrero, E. Mcdi-
na and J. J. L. Velitzquez [53, 54] from 1997 and 1998 since they studied system (16) in 
those papers. In [50, 55] they focused on the possible formation of 6-function singulari-
ties in finite time in space dimension N = 2. Using asyrnptotic expansion methods in 
[50] their result was the fohlowing: 
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Theorem 5 (Herrero & Velazquez) Let R > 0, and let QR = {x E JR2: 
I XI  <R}. 

Then there exist radial solutions of( 16) defined in an interval (0, T) with T > 0, and such 
that: 

(17) U(t,r) 

	

	8kC8(0) + (r) as t 	T, 
Xce 

in the sense ofmeasures, where 5(0) is the Dirac measure centered at r = 0, and: 

(18) (r) = 	e 	1og(r)l1!2  (2 log(r) D2! Iog(r)' 2  2(1 + o(1)) 

as r —* 0, where C is apositive constant depending on X. At t = T, theprofile near r = 0 
is given by: 

(19) U(t, r) = 81rkC6(0) + (r); 	(r) as in (18). 
xa 

Moreover, if we set S(t) = (T - t)(sup U(t, r)) 	(T — t) U(0, t), one has that um S(t) 
= oc. More precisely, there holds: 	0 

S(t) = C1  (T - t) 1 1 log(T — t) 	1b09(Tt)! as t 	T, for some C1 > 0. 

So they found solutions that form in finite time a b-singularity in the center of the 
disk in JR2 . Furthermore they investigated a result for the whole space in the three di-
mensional case in [53, 54] and [55]. There they studied seif-similar solutions and could 
formulate the following statements. 

Theorem 6 (Herrero, Medina & Velazquez) 

1. Consider (16) in space dimension N = 3 with 9 = JR3 . Then,for any T> 0 andany 
constant C >0, there exists a radial solution (U(t,r), V(t,r)) of (16) that is 
smoothfor all times 0 < t < T, blows up at r = 0 and t = T, and is such that: 

f 
IxI<r 

2. Consider (16) in space dimension N = 3 with 9 = 1R3 . For any T > 0 there exists 

	

a sequence {n}flEN  with lim 	6 = 0, and a sequence of radial solutions 
(U(t,r), V(t,r)), that blows up at r = 0 andt = T, andare such that U(t,r) is 
seif-similar, and 

U(t,r) 	(+ön)(4r2)—I 
x 

For this solution 

N(t,r):= f U(T,$)ds0asr0 
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3. No radial, self-similar solution of(16) exists such that N(t, r) < cc as r ---> 0 when 
N =2, resp. when 9 = 

Thus one slowly got more and more insights for the Keller-Segel model but at this 
point several questions still remained open. To name a few beside the questions raised 
in [69] we list the following. 

1. What happens if one drops the assumption of radial symmetry of the solution 
and how does in the case of blow-up the blow-up profile of the solutions look 
like? 

2. Is it possible to prove blow up results also for the full system (10)? 
3. Can one give the precise value of the threshold which decides whether the solu-

tion might blow up or not? 

As in the section before 1 summarize the results ofthis section in a table, too. 

Table 2: Possible time asymptotical behaviour of the solutions of the simplified mode! (16) 

Dimension 	Observation References 

N = 2 	There exists a critical value c(l) such that a unique, [69] 
smooth positive solution to (16) exists globally 
intimeifßxU o (x) < c(t!). 

Let f be a disk. Then there exists a positive number c* 
such that there exists radially symmetrip)tive initial 
data with the fol!owing property: If /3x U0 (x) > c 
then radially symmetrie positive initial values can be 
constructed such that explosion of U(t, x) happens in 
the center of the disk in finite time. 

There exists radially initial data such that the so!ution of [50, 55] 
(16) forms in the center ofa disk 9 a 6-function singularity 
described in Theorem 5 in finite time. 

When f = 1R2 ,then no radial, seif-similar so!utions of(16) [53, 55] 
exist such that 	f 	U( T, s) ds < cc asr -* 0. 

N = 3 	Let 9 = JR3 . Then there exists, for any T > 0 and [53, 54, 55 1 
any constant C> 0, a radial solution (U(t, r), V(t, r)) of 
(16) that is smooth for a!l times 0 < t < T, blows up 
atrOandtT,andissuchthat: 	f 	U(T,$)ds— C. 

For any T> 0 there exists a sequence {ö}flEN  with 
lim 	ö = 0, and a sequence of radial solutions 
(U(t, r), V(t, r)), that biows up at r = 0 and t = T, and 
are such that u(t, r) is se!f-similar, and 
U(t, r) 	(t + &) (47rr2) as r - 0. For this solution 

f U(T,$)ds—*Oasr--*0. 
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4.2 Progress and further questions 

After W. Jäger's and S. Luckhaus' paper in 1992 the next step was performed 1995 by 
T. Nagai in [92]. In his article "Blow-up of radially symmetric solutions to a chemotaxis 
system" [92] he proved the following result for the simplified system 

UI 	= V(Vu—uVv), xE1, t>0 

20 	
= L\v — 'yv+/3u, 	xE1, t>0 

	

'0u149n = 	0vIi9n = 0, 	x e 	‚ t> 0 

	

u(0,x) = 	uo(x), 	xEft 

Theorem 7 (Nagai) 

1. Suppose that N = 1, or N = 2 and 

ßx f uo(x)dx<4x 

B(O.R) 

with radially symmetrie u o  (x). Then Trr ax = oo and 

u(t,.) IL(B(O.R)) + 1 lv(t) lL(B(O,R)) } <. 

2. Let N> 2 and u0  be radially symmetrie. If 

21N / 	
(N-2)/N 

	

0 >2N(N_1)(ifu o (x)dx) 	1 
f 

UO(X)IXIN 

	

13 	 B(OR) 

N "1 
--/3x1--J uo(x)dx 

	

2 	Wn 
\ 	13 

	

+ßxNR(ufu o (x)dx) ( 	 f uo(x)lxdx 

	

Wn 
12 	 \ 	B(O,R) 	 / 

3/2 1 /2  

	

( 	
uo(x)dx) 

(BR, 

 UO(X)IXIN 

fN=2 

+ /3x7 

	

(2N-2)/N 	 21N 

	

2) (fuo(x)dx) 	(BJR, UO(X)IXIN 

(fN>3 

where WN denotes the area ofthe unit sphere SN_1  in IRN  then T11  < 00 and 

limsup llu(t, )HL(B(o,R)) = cc. 
I- Tmax 
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Furthermore the radially symmetric solution (u(t, r), v(t, r)) of(20) satisfies 

u(t, r) + v(t, r) <K(n) for 1 < r < R and0< t< 

where K(n) denotes a generic positive constant depending on n E N such that 

K(n) —* oo as n — 00. 

Thus the blow-up can only occur at thepoint r = 0. 

While the first statement is easy to check the second is based on some subtle estimates 
of the expression 

MN(t) =1 f u(t,x)xINdx. 
WN 

B(O.R) 

The global existence proof of solutions of (20) in one space dimension performed in 
[92] illustrates in a nice way how one tries to show the existence of the solution global in 
time in higher space dimensions. Therefore 1 first want to demonstrate this proof here. 
If one integrates for N = 1 the second equation of (20) 011 (—R, x) one gets 

v(t,x) =f v(t,y)dy_ßf u(t,y)dy. 

Thus we see that 
R 

lv,(t,X)l 
< 	

f uo(x)dx on 9 x (0, Tiiax ). 

For x E fl = (— R, R) we now obtain 

2Rv(t,x) 
= 

f v(ty)dy+f JV x(t,Z)dZdY 

and therefore 

0< v(t,x) 	(1+4R2) fuo(x)dx. 

Thus 

Iv(t, )HL0O(o) < const and Ivx(t, )HLco(0) < const for all 0 < t < Tmax . 

Multiplying now the first equation of (20) with uP for p > 1 and integrating the equa-
tion over 9 yields 

1 d 

0 	 0 	 0 
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Now the bound ofthe L-norm of the solution can be obtained by application ofN. D. 
Alikakos' version of the Moser iteration introduced in [2]. One therefore sees that the 
question whether the solution exists giobaily in time or not depends crucially on a Uni-
form bound for the L°-norm of the gradient ofv. This simplified version ofthe Keller-
Segel model has been extensively studied by Nagai and his coauthors. Once again we 
cannot follow the chronology since the different versions of the Keller-Segel model have 
been studied parallel. Thus 1 concentrate on the resuits on system (20) in this subsection 
and turn to the resuits for the full Keller-Segel mode! (10) resp. (15) later on. The simpli-
fied versions allow to decouple the system. Therefore techniques are available in these 
cases which are not at hand for the full parabolic version. For the simplified version 
(20) recent results from Nagai, Senba, Suzuki et al. give more information about the 
blow-up profile of the solution and the non symmetrie blow up. However their proofs 
are very technical and desire fine estimates that are difficult to demonstrate in a simple 
way. Thus 1 restrict myseif to present their resuits in Table 3 and 4. 

Table 3: Possible time asymptotical behaviour of the solutions of the simplified mode! (20) with 
>0. 

Dimension 	Observation References 

N = 1 	The solution of the Keller-Segel model exists [92] 
globally in time and is uniformly bounded for all t > 0. 

N 	2 	If fix f uo(x)dx < 47r then the ciassical solution of [92, 93, 94] 

the Keller-Segel model exists g!obally in time and is [95, 98,101] 
uniform!y bounded for all t > 0. Ift1 isa disk and uo is and [130] 
radially symmetrie or satisfies u(x) = u(—x) in 11 ‚ then 
this statement holds if OX fuo(x)dx < 87r. 

Letx0 E 9.Ifßxfuo(x)dx> 8andiffuo(x)x—xo 2 dx [102] 

is sufficiently small, then the corresponding solution of (20) 
and (16) biows up in finite time. 

Assume that Df has a line segment £0 , and that Q lies on [102] 
one side of a line L containing L. If furthermore 
[3xfuo(x)dx> 47r andiffuo(x)x_x o 2 dx 

is sufficiently small for a point xo  e L0 that is not an 
end-point of £‚ then the corresponding solution of (20) 
and (16) blows up in finite time. 

Iffl isa disk, u0 is radially sym.metric and if [92] 
fix f uo(x)dx> 41J2,  then there exists a constant C1  

depending on 	f uo (x)dx such that if 

0 <+f uo(x)x 2 dx < C1  thenublowsupinfrnitetime. 
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Table 4: Possible time asymptotical behaviour of the solutions of the simplified mode! (20) with 
7>0. 

Dimension 	Observation 	 References 

N = 2 	lf ßx f uo(x)dx < 87r and Tmax  <oc then there exists 	 [96, 97] 

a point in x0  E dtIl such that 
um sup f u(t, x)dx > 27r/aß for any E > 0, where 
tTmax 2flB(x0,) 

a isarootofa - x/2  - IuoILl(0)ßa/l67r = Osuchthat 
a <. 

Suppose Tm , < oc . Then there exist for any isolated 	 [96, 97, 131] 
blow-up point xo  two positive constants 5, m > m and 	and [136] 
a non-negative function 

f E L' (B(xo, ) n 9) fl C(B(xo, 6) n \ {xo}) such that u(t,) 
converges weakly in the Banach space of all Radon measures 
on B(xo, 6) fl 9 to m6 0  +f as t -* Tm , where m is equal 
to 41r/OX ifx0  e 99 and equal to 87r/ßx ifx0 E ft 

Suppose t = JR2  and let x0  e JR2  Ifßx f uo(x)dx> 87 	[99] 

and if f uo (x) IX - x0  I 2 dx is sufficiently small, then the 

corresponding solution of(20) b!ows up in finite time. 

N > 3 	If f is a sphere and uo is radially symmetric, then there exists 	[92] 
a constant C1 depending on . f uo (x)dx such that if 

0< 	f 
UO(X)IXIN < C1 thenub!owsupinfinitetime. 

Suppose f = IR N  and!et x0  5 JRNIf f uo(x)x - xo I N dx 	[99] 
IRN 

is sufficiently small, then the corresponding solution of (20) 
biows up in finite time. 	 - 

Of course one can 110W draw conclusions on the possible number of blow-up points. 
However 1 will mention these conclusions a little bit !ater. Thus at this point let us turn 
again to a different line of research. 

4.3 Analysis 01 the System (15) 

Similar to their resu!t for the simplified system (10) M. A. Herrero and J. J. L. Velitz-
quez achieved a very important contribution on the blow-up profile of the solution of 
the fu!l parabolic systems (10) and the system (15) with '' = 0 in their papers [51] and 
[52]. Using once again asymptotic expansion theory they were able to describe the blow-
up profile of System (10) and proved therefore the possibility of a 6-function formation 
in finite time for radially symmetrie solutions as it was conjectured by Nanjundiah [106] 
and Childress and Percus [24]. Their main result for system (10) is summarized as fol-
lows: 
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Theorem 8 (Herrero & VeJizquez) Let R > 0, and let QR = {x e JR2  : xI <R}. 
Then there exist radialsolutions of(10) definedin an interval (0, T) with T> 0, and such 
that: 

(21) u(t, r) 	8kc6(0) + (r) as t 	T. 
xoz 

in the sense ofmeasures, where 6(0) is the Dirac measure centered at r = 0, and: 

(22) C _21og(r)11/2 
r2 	

(l +o(1)) (r) =  

as r —* 0, where C is apositive constant depending on X. At t = T, theprofile near r = 0 
is given by: 

(23) u(t,r) = 8kcs(0) + (r); 	(r) as in (22). 
xa 

Moreover, f we set S(t) = (T — t)(sup u(t, r)) 	(T t)u(0, t), one has that um S(t) 
= . Moreprecisely, there holds: 

(24) S(t) = C1(T — t)1e21 b0T_1)l as t .' T, for some C i  > 0. 

The studies of the asymptotic behaviour of the solution in the non-symmetric case 
began with the resuits of[1 1,44, 94] and [158]. In [11,44, 94] the authors introduce inde-
pendently from each other a Lyapunov functional for System (10) resp. (15) which be-
came an important tool in the then following studies of the time asymptotic behaviour 
ofthe solution ofsystem (10) resp. (15). This Lyapunov function is given by 

(25) F(u(t). v(t)) := 

/

Vv(1) 2  + 	v(t) + u(t) log(u(t)) — u(t)v(t)dx. 

Using a Moser-Trudinger type inequality originally formulated by Chang and Yang in 
[23] the analysis ofthis functional shows the following: 

1. The functional F(u, v) is bounded from below, if 

xfuox)dx < 

2. The functional F(u, v) is no longer bounded from below, if 

x 
/ 

u0 (x)dx > 

3. For radially symmetric functions the functional F(u, v) is bounded from below, 
if 

f uo (x)dx < 8k. 
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] 

and is no longer bounded from below, if 

aXfuo(x)clx> 87rk. 

Now two different lines of research became recognizable. One considered system (10) 
and used more PDE based methods to prove global existence and finite time blow-up 
resuits for this System and the other was concerned with system (15) and used methods 
more related to the caiculus of variations. Once again one has to follow these two lines 
separately to get a clear picture of the achieved resuits. Let us first have a cioser look at 
the resuits for (10) 

4.3.1 Results tor system (10) 

Since the question of the well-posedness of a negative cross-diffusion system is not tri-
vial 1 first turn to the results on the local existence of a solution and possible regularity 
results. Here one should basically mention A. Yagi [158] and T. Nagai, T. Senba and K. 
Yoshida [94] whose resuits can be summarized as foliows: 

Theorem 9 Let 9 be a bounded, smooth domain in 1R2 . Assume u 0 , v0  e H0(1) 
für some 0 < EO < 1 and UO(X) > 0, vO(x) ~ 0 on ft Let T m  be the maximal existence 
time of(u(r), v(t)). 

1. (Yagi) System (10) has a non-negative solution (u, v) satisfying 

U, V E C([0, Trnax ) : H'1 ()) fl C' ((0, T,11 ) L2 (l)) fl C((0, 	H2 (l)) 

for any 0 < Ei < min{€o , 1/21. Moreover (u, v) hasfurther regularityproperties: 

U E C'«o, Tmax ) : H)), V E C«0 , Tm ) : H3 ()) fl C((0, Tm ) H 1 ()). 

2. (Yagi) IfTm <00, then 

um (Hu(t, •)HHI+EO(0) + v(t,  
t Tmax 

limsupHu(t,)JLp(0) =cx)forany 1 <p <00, 
t—  Tmax 

limsupHv(t1.)HH1+) = oofor any 0< € 
t Tm 

3. (Nagai, Senba & Yoshida) If 

f uo(x)dx < 
 ax 

where e = 87rfor 9 = {x e 1R2: 1 X 1 2  <R} and (u0 , vo ) is radial in x and e = 47r 
otherwise, then the solution (u, v) of(10) exists globally in time and 

sup{IIu(t, )HL) + Hv(t, )lL)} < 00.  
(>0 

The local existence and regularity resuits summarized in Theorem 9 above have been 
achieved by using semi-group theory. A. Yagi also proved similar local existence results 
for more general forms of the system (4) in [158] and 1 will turn to these results later. 
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The bound ofthe Locnorm  ofthe solution can once more be achieved by application of 
N. D. Alikakos' version of the Moser iteration introduced in [2]. Once again the basic 
and most important step is to find a uniform L-norm estimate of Vv(t,.) for all t > 0. 
Nagai, Senba and Yoshida succeeded in finding such a bound in the case where the 
functional F(u, v) is bounded from below. A. Yagi studied in [158] which norms ofthe 
solution have to blow-up if the solution exists only for a finite maximal time of existence 
Tj nite . However beside the resuits of Herrero and Velitzquez in [51, 52] there are no re-
suits, that show the existence of initial data such that the corresponding solution of(10) 
has to blow up in finite time. However there are results under the assumption that there 
is a solution which biows up in finite time. Let us therefore now turn to those resuits, 
that studies the blow-up profile and behaviour of such a solution. 

Under the main assumption that there is a solution of the Keller-Segel model that 
blows up in finite time Tfi njfe  such that 

(26) 	inf 	F(u(t), v(t)) > 0 or 
O<t<Tfln ite  

um F(u(t), v(t)) = —00 
t_Tfl nite  

Nagai, Senba and Suzuki proved in [100, 102] the following results. 

Theorem 10 (Nagai, Senba & Suzuki) Let 2 c JR2  be a bounded domain with 
smooth boundary afl. Furthermore let 13 denote the set of all those points x0 in Q such 
that there is a sequence {xk}kEN c f and a sequence {tk}kEN c [0, Tpn , te ) with 
u(tk, Xk) ‚ t/ Tj n jte  andxk - x0  as k - 00. 13 c 13 denotes the set of all isolated 
blow-uppoints, i.e x0  e 13, (ffthere  exists a R > 0 such that 

	

sup 	u(t, )ilL«B(x o  R)\B(x0,r))flO) <00 

O<Zt<Tflnite  

for any r e (0, R) with B(x o , R) := {x E 1R2 1 Jxo xI <R}. Then thefollowing state-
ments hold. 

1. Givenx o  e 13k , wehave0 < R « 1,m > m, and 

f E L'(B(x o ,P) fl ) fl C(B(x o ,R) flfl\{xo }) 

satisfyingf ~: 0 and u(t, .)dx converges weakly to m6 0  (dx) +f dx as t - 	 in 
the set of Radon measures on B(x o , R) fl 9 , where 

	

* 	187r, 	xo E 
m := 

(47r, x0 e0ft 

2. If(26) occurs, then 13 = 23.,. 
3. If(10) is radially symmetric and 	<00 then 23 = {0}. 
These results imply that in the case of a finite time blow-up of the solution the set of 

isolated blow-up points has finite cardinality and that 

1 <2 x (ß., fl ) + (Bi n 5) < 
XHUOHL1(o) 

	

- 	 47Fk 
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However a better lower bound of the quantity is of interest in the non radially sym-
metric case with aXIu0IIL1(2) > 8rk. \Vhere does the blow-up occur? Is there only one 
blow-up point in the interior of 9 or are there two blow-up points at the boundary &il 
in this case? 

Beside the previous resuits Senba and Suzuki established in [135] the following re-
suits using rearrangement and symmetrization arguments. These resuits are similar to 
those achieved independently and by other methods in [63] and [64] for system (15). 

Theorem 11 (Senba & Suzuki) Let 9 c lR 2  be a bounded domain with smooth 
boundary 9. 

1. If 9 is the unit disk, aXHuOIILI(0) < 8rk, and u o (x) = uo (—x), v o (x) = vo (—x) 
hold, then the solution of (10) exists globally in time and satisfies the equations in 
the ciassicalsense, i.e. the solution is sufficiently smooth. 

2. IfTmax <00 then 

um Iu(t)logu(t)H LI(0)  = um Hu(t)v(t)HLI(Q) = 00 
t—Tmax 	 1Tmax 

and 

jum IVv(t)I 2()  = hrn f edx = 00, 
t-'T,nax 
wherea>1. 

3. 1fS1 issimply connected, aX1uoHLI()  <8irk, and 	<00 then 

j m f ev(tV2dx = 00 . 
Tix J 

The last statement in particular implies together with the previous statements on the 
number of isolated blow-up points in Theorem 10 that if there is a solution that biows 
up in finite time for 47rk <aXHuØHL1(0)  <8irk then the blow-up has to happen at the 
boundary of the domain. However, at this stage it has to be pointed out that these re-
suits do not give the existence of a solution that blows up in either finite or infinite time. 
These results always use the existence of a solution that biows up in finite time as an as-
sumption, but do not prove that those solutions in fact really exist. 

Beside the analysis of the Keller-Segel system (10) on a bounded domain T. Nagai 
also studied the problem on the whole space JR2 . In this situation he could prove that 
for aX  f uo (x)dx < 4rk the solution exists globally in time, once again via analyzing 

the functional F(u, v) for Q = JR2  this time. Furthermore he found several decay prop-
erties of the solution but for those resuits 1 refer the reader to [99]. 

Throughout this subsection we focused on the two dimensional case and left out the 
other space dimensions. So what is known for the cases N = 1 and N> 3? For the case 
N = 1 the paper by K. Osaki and A. Yagi [113] fills the gap of the missing global exis-
tence proof for (10). Furthermore they show there that the w-limit set of the solution 
contains at least one stationary solution. For the case ofhigher space dimensions N > 3 
and a bounded domain 9 c JR N  1 am aware of any result on the time asymptotic beha-
viour of the solution. The local existence of a solution can be established in such cases 
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using the resuits of H. Amann [6, 7] for example. This has been mentioned for example 
in [62] and [119]. 

4.3.2 Results tor System (15) 

Independent from the previous line of research and parallel to those resuits there were 
the resuits for system (15). Under different regularity assumptions 011 the domain and 
the solution than those assumed in [94] and [158] H. Gajewski and K. Zacharias proved 
in [44] the local existence of a weak solution of (15) where they defined a weak solution 
of(15) in the following way. 

Definition 2 (Gajewski & Zacharias) A pair offunctions (U(t, x), V(t, x)) with 

V E L°°(0, T;L()) fl C(0, T;H 1 ()), 	V, e L 2 (0, T;L 2 ()) 

is ca/led a weak solution of( 15) Jffor all h E L 2  (0, T; H1  (cl)) thefollowing identities hold: 

o = fuh) dt+ff(VU - UVV) Vh dx dt, 

o=fJ Vh dx dt+ff(k cVV.Vh+ (7V — aX(U —  1))h) dxdt. 

Their existence result is: 

Theorem 12 (Gajewski & Zacharias) Let f c ]R 2  be a bounded domain and its 
boundary is piecewisefrom the dass C 2. For Uo E L(l) and Vo e W"P(l), p > 2, 
and appropriate T> 0 there is a unique weak solution of (15) with U(0) = 
U0, V(0) = V0 . Moreover, for 0 < t < T it holds t U(t) e L and the function 

VV(t) 	is absolutely continuous on [0, Ti. 

For (15) the Lyapunov function F takes the following form: 

F(U(t), V(t)) := 	kIV V(t)1 2  + 7V 2 (t) dx +f U(t)(log( U(t)) - 1)+ 1 - (U(t) - 1) V(t)dx. 

In fact Gajewski and Zacharias showed that one can bound F by a functional only de-
pending on V, namely 

F(U(t), V(t)) > F(V(t)) =kVV(t) + 7V(t) 2  dx - 	log (i ev(t)dx). 

Using the Moser-Trudinger type inequality by Chang and Yang in [23] it is possible to 
show that .F( V) is lower semicontinuous and coercive on the set D := { V E H' () 1 V 
has mean value zero over the domain Q } if aX 19 1 <4ek, where e denotes the smallest 
interior angle of the piecewise smooth domain Q. Therefore the calculus of variations 
guarantees the existence of a minimizer of F over the set V. As a conclusion we get the 
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boundedness of the functional F from below in this case. The boundedness of the Lya-
punov functional and the fact that for 

U(x) = _______ 

(j e V(x)dx  

1 
the equality F( U, V) = F(V) holds lead Gajewski and Zacharias to: 

Theorem 13 (Gajewski & Zacharias) Let aX  19 1 <4ek. Then there exist a sequence 

tk - 	andfunctions U, V such that 

U(tk) -* U in L 2 (9), V(tk) 	Vt in H 1 (), 

and 

F(U(tk), V(tk)) - F(U* ,  Vt) as tk 

Moreover the identity 

U*  

(f e v*dx  

\» 

holds, and V is the solution of ihe boundary valueproblem 

_k c V*+V*= cX (U*_1)jn , 	_= 0onD. 
an 

As it has been shown in [63, Theorem 3, page 408] the previous result does not only 
hold for subsequences. Furthermore the steady state might also be nontrivial in the case 
where aX191 <4ek. Gajewski and Zacharias presented in [44, Proposition 5.3, page 
109] anexampIeinwhich 9:= {(x,y) 0 <x <a, 0 <y < b}denotesarectanglewhere 

27rk 	2 	 7r2 k 
ab< — anda > 	 >0 

ax 	ax(log(4) - 1) - 

and the initial data (Uo (x), Vo (x)) is given by 

Uo(x)=l+cos() and 	
7rx  

We then see that 

F(Uo, Vo) <0 = F(1,0) 

and thus there has to be a nontrivial stationary solution of system (15) also in this case 
and not only in the cases mentioned in Section 3. 

The boundedness of the Lyapunov functional F( U, V) by the functional F( V) has 
several consequences that are demonstrated in [63]. However using the same sequence 
as in the proof of the existence of a nontrivial steady state solution in section 3 one can 
show for aX191 > 4k7r there is a sequence of functions { ( U, V) }> such that 

F(U, V) - - 00 as a - 0. 
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Furthermore, if1 c JR2  is simply connected and if aX 191 <8irk ' p e (1,87rk/x2) 
is arbitrary but fixed and q> 1 is such that 1 = l/p + 1/q then one can bound the func-
tional Y(V) from below in the following way: 

F(V) —> (p)
191 vvI 2 +v2  dx _11o (f e  qV12 dS) + 	 91), 

where K(p, q, a, x k, 19 1) denotes a constant depending onp, q, c, x k c  and 19 1 . How-
ever this has the consequence that we have the following blow-up result which sum-
marizes the resuits from [61, 63, 64, 65]. 

Theorem 14 (1-lorstinann & Wang) Let 9 c JR2  be a smooth, simply connected do-
main and'y > 0. Furthermore assume that 

4k7r < cxx j 9 1 and that a/k 47rmfor m E N, 

then there exist a constant - < k < 0 and initial data (Uo , Vo ), such that 

k > F(Uo , Vo ) 

and the corresponding solution of( 15) blows up in finite or infinite ti.'ne. Für these blow-up 
solutions thefollowing statements hold: 

1. hrn 11 U(t, )HL2(n) = um HU(t, •)ILDc(ü) = 
(4 Trriax 	 t- Tmax 

2. um U(t) log U(t) L' () = um f U(t, x) V(t, x) dx = cc 
t#Tmax 	 jTmax 

0 

3. hrn 	V V(t,.) L2(0) = hrn f 	dx = hirn 	V(t,.) 	= 
1-Tinax 	 lTrnax 	 f+Tmax 

0 

4. If4rk <cX 19 1 <8crk andh isa simply connecteddomain, then 

hrn f 
qV(Lx)/2 	= cc 

( Tnx 
30 

für every q e (87rk/(87rk - 	cc). 

There are technical reasons why one has to exclude the multiples of 47r in the theo-
rem. From the biological point of view this makes no sense and there is a hint in [70] 
that in Theorem 14 the statements are in fact true if one only assumes 4k7r < 
For 'y = 0 there is a similar result for radially symmetric initial data in [65]. Since this 
proof is easy to illustrate 1 give this theorem and the sketch of the proof, too. So we can 
formulate our blow-up result. 

Theorem 15 (Horstmann) Let f = B(0, R) c JR2 . Furt her assume that 'y = 0, 

8k1r < ceX191 and a/k 	8rq, q e N, 
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then there exist radially symmetric initial data (Uo , Vo ) anda constant k, such that 

k > F(Uo , Vo ) 

and the corresponding solution of( 15) blows up infinite or injinite time. 

The proof of Theorem 15 is easily demonstrated. First one shows the existence of 
the constant K via contradiction. Thus one assumes that there is no such constant. 
Therefore there exists for 9 = B(0, R) c JR2  a sequence (Vm) m EN E D ofsolutions ofthe 
equation 

{

_kc Vm  = ax(Ievm/fevmdx_1) in 

avm/an = 0, Ofl 

with 
f 

VVm 2  dx < cc Vm E N, um f IVV m 2 dX = 00 
m- 

0 	 0 

and 

um log(-J_f evmdx =00. 
m-. 

0 

These sequence can therefore be identified as a sequence of stationary solutions of sys-
tem (15) in the radially symmetric setting and with -y = 0. Using the transformation 

wm=vm _iog (f e vm 	a) - IxI 2 
 

0 

the function wm  solves the problem 

{ 

—zw, =2x ewm+(QX/4)k12, 	in 

	

awm/an - 	—(x.n(x)), 	onl, 

	

- 	2k 

with flVwm2dx<ooVmEN,  um fIVW m I 2dX00 
m-.o 

0 	 0 

and 

ewm H2 dx=1VmN. I  
0 

Usingthe resuits from [78] and the Sobolev imbedding theorems we see that vrn  is in fact 
C2 ' 8() provided 09 is Lipschitz and thus Wm also belongs to C2'l). According to a 
result from Brzis and Merle [20] there exists a subsequence (Wmj)m.EN  for these 
(Wm) mEN such that one ofthe following three alternatives holds: 
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1. The sequence ( 	is uniformly bounded in L.(l). 

2. For each compact subset )C c 9 we have: 

sup w —* — uniformly, as m, - 00. 

3. There exists a blow-up set 88 = {p ...‚p} c 9 and sequences 
(x)11im}  C 9 such that for m i oo, 

x—p 1 , w, 1 (x)—ooforj=1...m. 

Furthermore, on each compact subset )C c 9 \ BS we have 

supw,,. — — 00, as m, - 00 

and 

—

8irq6 

in the sense ofmeasure, where q1  E N. 
(See [82] for the statement about the q1 .) 

However as it has been done in [65] one can show that none of these alternatives is possi-
ble for such a sequence of stationary solutions. Therefore such a sequence cannot exist 
and one can conclude that there exists a constant K E IR (K <0), such that for all ra-
dially symmetric stationary solutions (U, V) ofsystem (15) 

F(U, V) > k> — oo  

holds. Now let us choose a Eo arbitrary but fixed, such that k> .T( V 0  (x)) where 

VE0 (x) = 'o((2 
+X2)2) 

 _f 
io(2 +X2)2) 

We see that V 0 (x) e W'(Q). Nowiet us set 

e o(x) 
UEQ(x) = feo(x)dx 

We see that U-0  e L (2) and that 

F(U 0 (x), 	(x)) = (V 0 (x)) <k. 

Choosing Uo (x) = U 0  (x) and V0 (x) = V (x) the corresponding solution of the Kel-
ler-Segel model (15) has to blow up in finite or infinite time. 

Of course there are questions directly connected with the above resuits. The two 
most important are: 

1. Is the blow-up time for the blow-up solution from Theorem 14 and Theorem 15 
finite? 
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2. Suppose Tm , < oo, does either inf F(U(t), V(t)) > - 
O<I<Tmax 

or um F(U(t), V(t)) = — 00 hold? 
tTmax 

H. Gajewski and K. Zacharias gave in [44, p. 94 & 951 an example for initial data for 
System (15) such that the solution biows up in the corner of a rhombic domain. They 
considered the domain 

	

1 x 	 /tan(e/2) 	1 = < (x y) 1 + — < 1, a = 	‚ b = _______ 
1 	a 	b 	V 	2 	/2tan(e/2) 

with an acute opening angle e < 7i-/2. For c = = k = 1 they used the initial data 

uo(x) = Uo(x)/Uo(x), 

where 

	

8(1+a) 	/ xI Uo(x)= 	expl-- 
or 

with 0 < cr < 1 and as Vo (x) the solution of the boundary value problem 

Vo +ii(uo —1) = 0 in 9
, a 

=0 on öft 

The corresponding solution (U(t), V(t)) ofthe equations (15) biows up in finite time in 
a corner of the domain. Furthermore their numerical calculations showed that for this 
solution the Lyapunov functional F(U(t), V(t)) - - oo  in finite time. There is also an-
other numerical example given in [43] where the initial data is such that the function 
u(x, 0) already has its maximum in the corner with the smallest interior angle of the 
rhombic domain. The solution then blows up in this corner in finite time. 

Some known resuits with their references are summarized once again in table 5. 
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Table 5: Possible time asymptotical behaviour of the solutions of (10) and of (15) 

Dimension 	Observation References 

N = 1 	The solution of the Keller-Segel model exists globally in [113] 
time and for any initial data uO e L 2 (!1), vo(x) E H' (12) 
with u0  > 0,fnuo(x)dx= M < oo,infnvo(x) > Othe 
w-limit set of the solution contains at least one stationary 
solution. 

N = 2 	If ax f uo (x)dx <4irk, then the solution exists globally in [11,44, 63] 

urne and its L-norm is uniform!y bounded for all times. 
and[94] 

Furthermore it converges to a stationary solution as t - m. 

If 4xk < cy f u0  (x)dx < 87rk, then there exist initial [63, 64, 135] 

data such that the corresponding solution of the 
Keller-Segel model biows up at the boundary of 12 either 
in finite or in infinite time. 

If8irk < aX f uo (x)dx, then there exist initial data [52, 61, 641 

such that the corresponding solution of the Keller-Segel 
and[65] 

model biows up either in finite or in infinite time. 

Furthermore there exist radially symmetrie initial data [52] 
such that u(t, x) forms a 6-singularity in finite lime 
in the center ofa disk 12. 

Given a blow-up solution and an isolated blow-up point xO, 	[100] 
wehave0 < R « 1,m > m*,and 

f E L' (B(xo, P) fl 12) n C(B(xo, R) fl 12 \ {xo}) satisfying 
f > 0 and u(t, )dx converges weakly to mÖ 0  (dx) +f dx 

as t - 	in the set of Radon measures on B(xo, R) fl 12, 
where m*  is either 87r, for x o  e 12 or 4x for xo e 912. 

lfthe blow-up time is finite and (26) holds there exist only 
isolated blow-up points. 

If (10) is radially symmetrie and T nax  < 	then the set 
ofblow-up point consists only of the origin {0}. 

If 12 = 2 and ax f uo (x)dx < 47rk then the solution of(10)  IR 
	

[99] 

exists globally in time. 

N = 3 	Let 12 be a smoothly bounded domain in 1R3 . For sufficiently 	[16] 
srnooth initial data, satisfying the boundary data there exists 
a unique solution of (10) locally in time. Furthermore for all 
T > 0 there exists a constant CT, such that if the initial data 
satisfies 1 voH2() < CT, 11 UoIL(p) < Cr and 

IVuoI L2(0) < CT, then the problem (10) has a unique 
solution on 0, T] x 12. 
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4.4 Results tor related systems 

There are some related resuits that should be mentioned at this point of this survey. P. 
Buer studied in [11] system (10) with different boundary conditions. For system (10) his 
local existence result is pretty much the same as the local existence result of Gajewski 
and Zacharias [44]. 

However for the system 

	

UI 	= 	V(Vu - XuVv), 	 x E l, t > 0 

	

0 	= 	kLv—'yv+au, 	 xEl,t>0 
(27) 	0 	= au/an - xuav/an, x E 3, t>0, v(t,x) = K * (au(t,x)), 

u(0,x) = 	 Uo(x), 

where K2  denotes the Bessel potential, Biler proves the following finite tirne blow up re-
sult: 

Theorem 16 (Biler) If 9 c IRN ,  N > 2, is a bounded star-shaped domain (with re-
spect to the origin), thenfor uo  (x) with sufficiently large 1 I UO I ILI = M, there is no glo-
bal in time solution of (27). 

Results similar to those results in [64, 65] have been proven by G. Wolansky in [155] 
for the system 

	

0 	= 	V(Vu—uVv), 	xel,t>0 

28 	 = 	kLv + au, 	 x e l, t> 0 

	

0 	= au/an - u3v/8n, v(t, x) = 0, x al, t> 0 
u(0,x) = 	uo(x), v(0,x) = vo(x) 	xft 

This system contains an elliptic equation for the myxamoebae density and a parabolic 
equation for the cAMP-concentration similar to the second equation in (10). Even 
though he also has a Lyapunov function the techniques he used to prove bis blow up re-
sult can only be applied to a system with Dirichlet boundary conditions for the second 
equation. They fail in the case of Neumann boundary conditions as they are treated in 
[64, 65]. In [155] G. Wolansky is led to an equation for the stationary solutions of his 
model which is similar to problem (13). However in his case the equation is equipped 
with Dirichlet boundary data, which aliows hirn to use different arguments (more pre-
cisely the moving plane method see [31, pp. 521-522]) to exclude the first alternative of 
the Brzis and Merle [20] result. In the case that is mentioned in the previous section 
and [64, 65] one has to use different techniques to get rid of the possible alternatives sta-
ted by Br&is and Merle in [20]. 

5 Comparison of the questions asked by Jäger and Luckhaus 
with the resuits so far 

Let us now take some time and let us see which questions of those asked in [69] have 
been answered up to now and which remain open. W. Jäger and S. Luckhaus asked 
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about more information on the set of blow-up points. We have seen in the previous sec-
tions that there exists the possibility of blow-up points in the interior and at the bound-
ary of a domain 9 ci JR2 . Also the upper bound of the possible number of blow-up 
points is sharp and known, however a better lower bound is still needed. Also the loca-
tion of the boundary blow-up points should be studied more carefully. For smooth do-
mains the boundary blow-up point should be a point of maximal mean curvature which 
would correspond with the numerical caiculations of H. Gajewski and K. Zacharias in 
[44] for piecewise smooth domains and with the results and hints from the steady state 
analysis resp. the shape ofthe least energy solutions. 

The question whether the solution exists globally in time as a weak solution can be 
negated. However it might be possible to study the problem for a different formulation 
of a solution like L'-solutions. But as far as 1 know there has not been any attempt to 
do so up to now. For the third question we turn to an own subsection. 

5.1 What happens after blow-up? 

In connection with the question "U'7at happens after the blow up ofthe solution?" that 
was already asked in [69], we have seen that the solution does not exist globally in time 
as a weak H' —solution, but is there a notation of a measure valued solution or L' -solu-
tion for the Keller-Segel model? With such a notation, which would be natural since the 
solution belongs to L' (cl) for all times, it would make sense to study the possible move-
ment of the aggregation centers in the considered domain. 

Using a different approach than the idea of introducing a new notation ofa solution 
as just mentioned, J. J. L. Velitzquez made the first step to give an answer to the ques-
tion what will happen after blow-up in [151, 152]. 

In [150] J. J. L. Velitzquez studied the question whether aggregation at the interior 
ofthe boundary of the domain 9 ci JR2  takes place in a stable manner, or, ifon the con-
trary, solutions exhibit a tendency to move towards the boundary. His result is that 
after small pertubations ofthe solution found in [52], the new solution will blow up in a 
manner entirely similar but in a slightly shifted point of 9 at a slightly different time. 
Thus his computations indicate that the possibility of aggregates with high density of u 
moving quickly towards the boundary does not exist. 

He then studies in [151, 152] the system 

(29) {u, = V(Vu—G(u)Vv), xelR2 , t>0 
0 = 	Av+u, 	xEIR2 , t>0, 

where GE (u) = Q(€u) for a small parameter € > 0 and an increasing function Q(s) satis-
fying Q(s) = s + 0(s2 ) as s - 0 and Q(s) L as s - oc, where L > 0 is a given  num-
ber. For Q(s) = and € = 0 the system becomes formally system (16). For € > 0 the 
solution of (29) exist globally in time under general assumptions on the initial data. 
Thus it is a natural question to try to understand the asymptotics of the solution of (29) 
when € approaches zero. This has been done in [151] using asymptotic expansions. 
Using these methods Velzquez showed that solutions of system (29) exist, that have a 
finite amount of mass M(t) concentrated in a neighbourhood of a set of points x 1 (t). 
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Veltzquez studies the motion of those regions with high densities of u in [151] and de-
rives a system of equations that describes the dynamics of these regions. According to 
the formal limit as e - 0 bis resuits can somehow be interpreted as a formal expianation 
of the behaviour of the solution of (16) after blow up. The well-posedness of the derived 
system for the dynamics ofthe high density regions is established in [152]. 

6 More general formulations of the chemotaxis equations 

The original formulation of the Keller-Segel model allowed more general functional 
forms than we assumed in the last section. Even though the question whether the given 
functional form represents the situation in Dictyostelium aggregation in an appropriate 
way should be discussed, the System is adequate to describe chemotactical movement of 
mobile species. A number of possible plausible functional forms has been proposed by 
E.F. Keller in [76]. Several of these proposed functional forms will also be discussed in 
the upcoming subsections. Furthermore she discussed the possible existence of traveling 
wave solutions, a topic which will be in the center of our observations later in this paper. 
Since there is a large number of different examples for species that move positive che-
motactically and also a large variety of different models for the chemotactical sensing of 
the particular species (see for example [84] for a model of the cAMP production and 
sensing mechanism in Dictyostelium discoideum) it is useful to try to find a more gener-
al theory that contains a larger dass of possible models. Let us see what results are 
available in this cases. So let us now turn to more general formulations of the system 
without having a particular biological example in mmd. So we focus on the following 
system of two nonlinear parabolic partial differential equations, which is given by 

(30) J 	V(k(u, v)Vu - h(u, v)Vv), x E 9, t> 0 

 V t  = 	kv —f(v)v + g(u, v), 	x E 	t > 0 

for9 c JRN completed with either 

 Ov  (31) 	= 	= 0on39 x{t>0}, 
3n 	3n 

(32) or u = 0, v = 0 on 3l x {t> 01, 

3v (33) or k(u, v) - - h(u, v) 	= 0, v = 0 011 3l x {t > 01 
an 

as boundary conditions and initial data u(0, x) = Uo(x) and v(0, x) = vO(x) for x e ft 
Here k is once again a positive constant. For the functions appearing in the model the 
following conditions have been considered to be reasonable: k(r,$) > 0 for all 
(r, s) E JR x IR, the functionf satisfiesf(s) > const for alls E JR and g(r, s) 0 holds Or 
forall(r,$) E JR x JR. 

The question whether a solution to such problems exist locally in time has been stu-
died in [62] using results by H. Amann [6, 7] and in [158] using other techniques. As it 
was mentioned in the previous section a Lyapunov function is a helpful tool for analyz-
ing the time asymptotic behaviour of the solution. Thus one wonders under which don- 
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ditions the present system has a Lyapunov function. Therefore we turn to this question 
next. 

6.1 Lyapunov tunctions 

For the rest of the present section we will use the following notations: 

F(v) := Jf(s)s ds and G(u, v) := 
— J g(u, s) ds. 

At some places ofthe present section we will assume that 

(34) fF(v) dx>kifv2  dx 

is true, where k1 is a nonnegative constant (If we have homogeneous Neumann bound-
ary data we assume k1 > 0!). 

Theorem 17 (Horstmann) Ifthere exists afunction R(u) such that 

[u' v +R(u)] +-G(u,v) = 0, 

then there exists a Lyapunovfunctionfor system (30), provided 	G(u, v) + R(u) > 0 au2

holds truefor the solution of(30). In the case of boundary condition (32) we have 10 assume 
additionally thata G(0, 0) = 0 = (0). The Lyapunovfunctionfor System (30) is then gi-
yen by 

(u(t), v(t)) 	

/ 	

Vv(t)J + F(v(t)) + R(u(t)) + G(u(t), v(t))dx. 

A large riumber of examples is given in [62]. Let us here only give two examples for 
which a Lyapunov function 7-t(u, v) exists. 

1. Let consider (30) with h(u, v) = u, g(u, v) = u2e, k(u, v) = 1, f(v) arbi-
trary. Then we have the Lyapunov function 

(u(t), v(t)) := / 

	

Vv(t) 2 + F(v(t)) + fu2(t)edx, i.e. R(u) = u2 /2. 

2. One can also find a whole dass of other examples where a Lyapunov function ex-
ists. Let us suppose that we study system (30) together with (31). Let 

h(u, v) = h2 (u)b(v) and g(u, v) = q(v) fh i  (s) ds, 

k(u,v) = k(u) +-- (_h i (u)) f(s)ds 
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andf(v) be arbitrary. We see that there is a function R(u) such that 

d2 	k(u,v)hi(u) 	
(hi (u))f(s) ds. 

du2 	- h 2 (u) 	ju 

Of course we see in this example that the right hand side has to be independent 
of v. If this is the case, then there exists a Lyapunov function ?-«u,  v) of the type 
given above, which is possibly unbounded from below. This example includes 
the systems studied in [44] and [119]. In [119] we have h(u, v) = u(v) (with 

(v) > 0), g(u, v) = u(v), k(u, v) = 1 and f(v) = const > 0. Finally we get in 
this case R(u) = ulog(u). For further resuits concerning some special cases of 
this type ofsystems see [119]. 

In fact this result aliows to make statements for a larger dass of nonlinearities in g(u, v) 
than those studied before for system (30) (as far as the author knows). Under certain ad-
ditional assumptions one can now formulate results for the time asymptotic behaviour 
of the solution. Therefore we now make the following main assumption for the rest of 
this section. 

Main assumption: 

(35) J G(u, v) + R(u)dx > kf 1vv1 2  dx + const with k,+ 
 k2 > 0. 

In some special cases of (30) one can show that the solution of (30) converges to a 
possibly nontrivial steady state as t - (see [44, 62] and [119]). The results of W. Alt 
[3], R. Schaaf [128] and K. Post [119] concerning the Keller-Segel model in chemotaxis 
seem to indicate that such behaviour can also be expected in a more general setting. The 
following theorem summarizes our results on this aspect. 

Theorem 18 (Horstmann) Suppose that (u(t), v(t)) isa weak solution of(30) and that 
(34) as weil as our main assumption (35) is satisfied. Furthermore let either 

1 [ G(u, v) + 4R(u)]/k(u, v) <k 3 and&  G(u, v) + R(u) > k or 

2. 0< [4G(u,v) +'4R(u)]  exp(G(u,v)+R(u)) <k 5k(u,v)and 

v
k(u(t), v(t)) 

e L 2() 

	

- G(u(t), v(t)) + 	R(u(t)) 

for all t > 0 

be true for the solution (u(t), v(t)) of (30). Let additionally f be Hölder continuous with 
Hölder exponent ß < 1 such that 0 <3 1 if N < 3 or ß < 21N if N> 3. Finally as-
sume that lf(v) 1 < Kffor all v E JR. Then there exist a sequence (tk)kEN  and twofunctions 
v * and g* such that v(tk) v in H'() resp. in H(),f(v(tk))v(tk) __f( v *) v* in L 2 () 
andg(u(tk), v(tk)) 	g* in L 2 (). Furthermore 
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/ 
kcvv*v +f (v*)v* ~o dx 

= / 
g* dx 

for all p e H' (Q) (resp. e H ()). Finaily we see that 

exp ( 	
G(U(tk), v(tk)) + LR(u(tk))] 

) 	const 
2 	

- 

 

in L 2  (cl) ([1.  holds and, respectively, 

exp 
(_

[ 
G(U(tk), v(t k )) + 

2 	
)_const 

in L 2 (2) if2. holds. 

The previous given first example satisfies assumption 1. of Theorem 18 while the sys-
tems studied in [44] and [119] satisfy assumption 2. of Theorem 18. The proof of this 
theorem goes along the line of the proof of Theorem 5.2 in [44, page 107] and can be 
found in detail in [62]. 

Furthermore one can also formulate certain conditions under which some 
L—estimates for the solution are possible. This has also been done in [62]. 

More general forms of the Keller-Segel mode! (4) have also been studied by A. Yagi 
in [158] for the case oftwo space dimensions and in the case ofone spatial dimension by 
K. Osaki and A. Yagi in [113]. In [113] the authors study the Keller-Segel model (4) with 
k 1  (u, v) = const, uf(v) - k o (v)v = au - "yv and k2 (u, v) = ux(v) where x(s) is a smooth 
function ofs e (0, oc) satisfying 

X(s) 1 <const- ( + !Y, 
\ 	SI 

for 0 <s < oc, i = 0, 1,2 with some positive constant and exponent r. In [113] they 
show that there exists a compact set of finite fractal dimension which attracts the solu-
tions exponentially. 

A. Yagi studied in [158] the two dimensional case of the Keller-Segel model under 
the assumptions that k i (u, v) = co  + c1 u + c2v with a positive constant Co > 0 and non-
negative constants c 1 , c2 , and assuming that k,(u, v) = ux(v) with 0 < y(s) <bo (1 + 
and that x(s), k3 (s), f(s) are smooth functions of s E lR satisfying 0 <f(s) <b1 , 

k(s) < b3 (sPO + 1), where b0 , b 1 , b2 , b3  are positive constants strictly larger than 
zero and the exponent po > 0. For the initial data he assumed that uo (x) > 0 011 

vo(x) > iio > 0 onD belong to H'0() with some exponent 0 < €o < 1 and a positive 
constant io.  Using semigroup theory Yagi established the local in time existence of an 
unique, positive, classical solution in the same space as it has already been mentioned in 
the case of a linear sensitivity function in a previous section. Furthermore he determines 
blow-up norms ofthe maximal solution. 
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6.1.1 Results on finite time blow-up 

As it has been already mentioned in the section on the steady state solutions of the Kel-
1er-Segel model Nanjundiah's conjecture also contained a statement 011 the time asymp-
totical behaviour of the solution of the Keller-Segel model with a logarithmic chemotac-
tical sensitivity function. Therefore we will first look at the resuits for this conjecture 
and related results. In this subsection we consider (4) with k 1  (u, v) = 1, 
uf(v) - k 3 (v)v = (u - v), /c = and k2 (u, v) either x or juv' forp > 0. In the lim-
iting case E = 0 it is easy to show in the same way as it has been done in the case of a lin-
ear chemotactical sensitivity function that the solution exists globally in time and that 
the L°°-norm of the solution is uniformly bounded for all times. Thus the interesting 
cases are once more the higher dimensional ones. So let us surnmarize these cases: 

1. Let k2  (u, v) = u(v) where f (s)ds is a smooth function with (s) > 0 for s > 0. 

(a) Let N = 1, € = 0 and f (s)ds be smooth on (0, oo). Then the solution of the 
Keller-Segel model exists globally in time and is uniformly bounded. (See 
[98].) 

2. Let k 2 (u, v) =Xpuv - ' forp> 0. 
(a) Let N = 2 and e = 0. If 0 <p < 1, then the solution of the Keller-Segel 

model exists globally in time and is uniformly bounded. If 9 is a disk, uo  is 
radially symmetric, f u 0  (x) x 2 dx is sufficiently small and p > 1, then the 

correspondmg solution of(4) biows up in finite time. (See [93, 98, 130].) 
(b) Let N > 3 and 6 = 0. If 9 is a disk, u0  is radially symmetric, 

fuo(x)x 2 " 2dx is sufficiently small andp > 0, then Tinax  <oo and the 

corresponding solution of(4) blows up in finite time.(See [93, 98, 130].) 
3. Letk(u,v) = 

(a) Let N = 2 and 6 = 0. If 9 isa disk, u0  is radially symmetric, then the solution 
is globally bounded in time. (See [93, 98, 130].) 

(b) Let N > 3 and 6 = 0. If 9 is a disk, u0  is radially symmetric and 
x <2/(N - 2), then the solution is globally bounded in time. (See [93, 98, 
130].) 

(c) Let N = 2 and e = 1. If x < 1, then the solution of (4) exists globally in time 
and for T > 0 there exists a constant CT < 00 such that 

sup ( u(t,.) L(0)+ v(t,.)IL(0)) <CT. 

(See [95].) 
(d) Let N = 2 and 6 = 1. IfQ is a disk, the initial data (uo (x), vo(x)) is radially 

symmetric and x < 5/2, then the solution exists giobaily in time. (See [95].) 
(e) Let N > 3 and e = 0. Ifl isa disk, u0  is radially symmetric, fuo(x)x 2dxis 

sufficiently small and x > 2N1(N - 2), then the solution of (4) blows up in 
finite time. (See [93, 98, 130].) 
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Resuits similar to (3c) have been obtained by K. Post studying (4) with k 1  (u, v) = 1, 
k2 (u, v) = u'(v), uf(v) - k 3 (v)v = u11(v) - v and k = 1. For the precise details 1 refer 
the reader to [119]. 

Rascle and Ziti analyzed in [122] the system 

U1 = V(,aVu - uvVv), x e 9, t> 0 
Vt = 	_kuv m, 	 xEl, 

where the constants x k > 0. They constructed seif-similar solutions for this system as-
suming that in <i3 = 1. For ji = 0 and one space dimension they observed that the bac-
terial density concentrated in finite time at the origin. For two space dimensions and in-
itial data for the bacterial density which is zero at the origin they derived chemotactic 
rings concentrated around the origin after finite time. In higher space dimensions they 
achieved blow-up of the solution by an initial singularity of the chemoattractant in the 
origin. 

For ji > 0 Rascle and Ziti observed in one space dimension that there are smooth in-
itial data leading to finite time blow-up of the solution, while they were unable to con-
struct self-similar solutions in space dimension larger or equal to two for reasonable in-
itial conditions. 

For in = 1 and V replaced by a more general sensitivity function (v) satisfying 
x(s) > 0 for s e 1R and 

inf±1> 1 
s° x(s) 

this system has also been studied by Corrias et al in [27]. They considered the case of a 
bounded domain and the case of2 = IRN In both cases they proved an existence result 
and studied the behaviour of the solution as t - 00. For a bounded domain they 
showed that 

u(t,.) 	uo  dx in L'() and v(t,.) 	0 in L), p < 00. 

Furthermore they show the existence of radially symmetric self-similar solutions for 
N =2. 

6.1.2 Prevention ot overcrowd ing 

There are different points of view whether blow-up in chemotaxis is relevant or not. In 
fact for the chemotaxis system introduced and derived in the Davis' case by Othmer and 
Stevens for a single particle in [116] blow-up in finite time seems to correspond with the 
fact that the particle is trapped respectively localizes in finite time at one particular place 
(see also [139] for more comments on that aspect). Thus blow-up really makes sense for 
their model. Furthermore, blowing up of the solution only describes a high concentra-
tion of the particle populations in some aggregation centers. (Of course the convergence 
of the solution to non-trivial steady state solutions can also describe aggregation, but 
they are not the only possibility.) Since the Keller-Segel model only wants to describe 
the aggregation phase of chemotactical movement and not the formation of a fruiting 
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body the blow-up question is surely worth studying. As J. J. L. Veltzquez wrote in [151, 
pp. 1-2]: 

"Blow-up usually takespiace in physical or biological models if they are approximations ofmore 
realistic models, usually containing smallparameter (say € > 0), that cannot exhibit singular be-
haviours unless thisparameter is Set to zero. Suppose thatfor € = 0 the limit problem can develop 
singularities infinite time. The behaviour of the complete modelfor € > 0 usually is similar to that 
of the limit inodel away from the singularities. However, the features of the problem with € > 0 
but small are usually very dfferent from that of the limit problem near the singularities. The pre-
sence of blow-up just indicates that the approximations that lead to the simpler model where blow-
up takesplace are not valid anymore near the singularity and that the whole dynamics of the com-
plete model needs to be taken into account here." 

However there are also other models of Keller-Segel type which exclude the possibility 
of blow-up solutions directly by introducing some mechanisms, that provide to strong 
aggregations or where the chemical production and decay directly is such that blow-up 
is impossible. For example in the case of the linear chemotactical sensitivity function 
g(u(t,x),v(t,x)) E L4 (l) for all t > 0 with an uniform bound for all t > 0 guarantees 
the global existence of the solution of System (30) ( see for example [62]). One model 
containing a prevention of an overcrowding of the chemotactical species has been pro-
posed by T. Hillen and K. J. Painter in [57]. They considered system (30) on a C 3 -differ-
entiable, compact Riemannian manifold M under the assumptions that k(u, v) = 1, 
h(u, v) = u/3(u)(v) where /3, x are three times continuous differentiable functions satis-
fying x > 0, /3(0) > 0 and there exists a ü > 0 such that 3(ü) = 0 and /3(u) > 0 for 
0 < u <ü. They assumed that the function f(v) 0 and that g(u, v) = 
gi(u, v)u - g2(u, v)v is twice continuously differentiable with a bounded death rate 
92 > 6> 0 and a birthrate g l  > 0. In their paper they prove the global existence of the 
solution in this case and present numerical simulations for the time evolution of the Sys-

tem in one and two space dimensions. They also show the potential pattern variety of 
the final steady state patterns for their version ofmodel (30). 

6.1.3 Chemotaxis equations with population growth 

An extremely large number of models describing chemotactical movement for species in 
a reproduction stage can be found in the literature. In general they are based on some 
version of the Keller-Segel equations with an additional growth term in the first equa-
tion. For example A. Bonami, D. Hilhorst, E. Logak and M. Mimura consider in [13, 
14] the following versions ofthe classical model: 

36 J U = V(ki(u)Vu - uV(v)) +f(u), x E 1, t> 0 
'lEv = 	kzv—'yv+au, 	xEl, t>0 

where ki(u) = 1 andf(u) = u(l - u)(u - a) with a constant 0 <a < 1 (see also [49] for 
results related to this system). However also different functional forms for f(u) are 
thinkable. For example in [17] one finds the proposed functional forrnf(u) = au for a 
positive constant a> 0 and in [29] system (36) is studied with ki(u) = um and 
f(u) = u(l - P) with m> 1 andp> 1. Some effects of such growth terms on the var-
ious possible patterns that one can observe during the evolution of the solution will be 
mentioned in Section 8.5 of the present paper. 
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For some results on a more general chemotaxis growth model we refer the interested 
reader to [154]. There X. Wang studied in one space dimension the steady state solu-
tions ofthe system 

U t 	V(Vu - uV(v)) + (kf(u) - 6— /3v)v, x e [0, 1], t> 0 

(37) 
V t 	 AV —f(u)v, 	 x E [0, 1], t > 0 

k 
UX 	 xu(O(v»,at x = 0, 1, 

v(0) = 	0, V(1) = h(1 - 

where .\‚ k, 9, h and ß are positive constants and X > 0 for different possible growth 
termsf(u) e C3 ([0, oo)) and chemotactic sensitivity functions (v) e C5 ([0, oc)) satisfy-
ingf(0) = 0,f'(s) > 0 and i(s) > 0 for s e [0, oc). He also proves the global existence 
and boundedness of the solution for those different growth factors for the population 
density. 

7 The comparison principles by W. Alt tor chemotaxis equations 

In his (unfortunately almost unknown) Habilitation [3] from 1980 Wolfgang Alt studies 
quasilinear parabolic and elliptic systems including the chemotaxis equations by Keller 
and Segel with and without growth terms and for single and many species populations. 
1 restrict myseif to mention only some results from the very nice and interesting work 
from 1980 although more general results might hold and are shown in [3]. However 1 
present W. Alt's results in an own separated section, since it is a little bit difficult to get 
this reference. 

The time-dependent Keller-Segel system is included in the dass of quasilinear para-
bolic cross-diffusion systems and the steady state problem belongs to the dass of quasi-
linear elliptic systems. Important tools in the studies of elliptic and parabolic equations 
of second order are comparison and maximum principles to prove qualitative properties 
of the solution like boundedness or blow-up phenomena of the solution by constructing 
suitable super- and subsolutions for the considered problems. Also for existence results 
for elliptic and parabolic problems comparison principles have been used to apply Per-
ron's method. Wolfgang Alt presents such comparison principles in [3] which also hold 
for coupled systems ofthe following general form: 

Bo (u(y))D ou(y) = 	(ai.i(y)A(u(y))u(y)) - 	Bk(u(y))»k(y)D/ju(y) 
iI=1 	 'J 	 k=1 

(38) + C(y,u(y),Du(y))+F(y,u(y)) 

on a domain A in 1W' and for a function u e C2(A, IRM)  resp. a distribution 
u E D'(A, JRM)  where 

1. The notations 

Du(y) := X(y) . Vu(y) and Du(y) := (Diu(y), ...‚ D,u(y)) 

are used for vectorfields X, = (ß . .... . /3) e C(Ä, IRM) (i = 0, 1,..., m) and 
y e A. 
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2. The a,1  are defined as aj,j (y) = 	a,1 (y)/3(y)/3(y) with continuous func- 

tions a
„V = anu.p and (a) ~ 0 on A , and satisfy for all y e Ä and all e e 1R' the 

inequality 

a(y) > ((y)2 
1', 1 	 1 

with a on Ä lower semicontinuous positive function . 

3. The functions b 1  are continuous on A. 
4. The matrix-functions A, B : IRM 	MxM are continuous and det(A) > 0 and 

B0 > O on lRM .  

5. F : A x IRM IRM and C : X x IRM  x IRmM 	M  are measurable in y E A, 
continuous in z E IRM and w e lRmM,  and uniformly bounded on A x /C, with a 
compact set /C c IRM.  For example the function C can be given by IRMvalued 
bilinear forms C,1 . like: 

C(y,z,w) = Z C[w,w] 

wjth w= ( w l ,..., Wn)EJRTMm .  

Although W. Alt's resuits hold for systems in this general setting 1 restrict myself to 
systems appropriate to model chemotaxis and present his results if possible in versions 
for those problems. From the applicational point of view one would like to know 
whether the considered model remains bounded for all times or not. Thus the existence 
of invariant sets for the system is an interesting topic worth studying. Alt presents such 
results in his Habilitation. Therefore the first result presented here is the following in-
variance theorem for parabolic systems (see [3, Satz 1.25, page 31 & 32]): 

Theorem 19 (Alt) Let p > 0 be in Cj' (IRM)  and let M be defined as the set 
M := {z e IRM  1 p(z) = 01 0. Furthermore let us assume that u is a weak solution of 
the parabolicproblem 

u t =-(A(u)u)+F(u) inx (0,r) (lClRN) 
j=1 

	

= '(u), 	 Ofl (9N X [0,7-] 

	

u(x, 0) = uo(x), 	 on a1D x [0, r], 

where 01N  and 01D  denote disjunct subsets ofaQ. For the boundary conditions we assume 
that there exists a continuousfamily of symmetric M x M-matrices A*(z)  0, z E JRM 

and that there exist vectorfunctions O : OQ N  x IRM 
- JR such that 

(x,z) = A*( z )Oj (x,z ) and 9J(x,z) A(z) 0 1 (x,z) < const 

for all z in a compact subset IOf JRM  and x E 81N, where o = and j = - 

»‚for ozj  

M. Furthermore we suppose that there exists a neighbourhoodU ofM such that 

17pl,t'0, 17pF<0aswellas172pA>0holdsonU\M, ifV2pexists. 
Thenu(.,0) c Mimpliesu(,t) c Mforallte [0,7-]. 
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However not only the question whether the solution remains in a certain set for all times 
if the initial data belongs to this set is an interesting one. As demonstrated in the pre-
vious section the existence of Lyapunov functionals is a helpful tool in the studies of the 
time asymptotic as t -* x. In [3] W. Alt presents results for the existence of Lyapunov 
functionals which are different from the results of Theorem 17 of this paper. To be pre-
cise W. Alt proved the following Corollary: 

Corollary 1 (Alt) Assume that the assumptions of Theorem 19 are fu(fihled. The 
Dini-derivative ofthefunctional 

E(t) := f p(u(t,x))dx, t e [O,r] 

satisfiesfor all weak solutions which have values in U the inequality 

E(t) < _f 	(u)V2p(u)A(u)(u)dx+f Vp(u) .F(u)dx+ f Vp(u) (u)dS 
Oxj  

almost everywhere in [0, ]. Iffor all z e U \ M either Vp . /' < 0 or Vp F < 0 holds, 
then E is a Lyapunovfunctionalfor M, i.e. E(t) <0 as long as E(t) > 0. Iffor all 
z E U \ M either Vp . e < 0 or Vp . F < 0 or 172p . A <0 holds, then E is a Lyapunov 
functional for M U jV o , where .N0 contains all constants zo  E JRM that are zeros of 
Vp . 0 and Vp . F. 

Now, let me demonstrate this resuits by applying Theorem 19 to an example (see [3, 
Beispiel 1.41, page 38]): 

Consider the weak solution ofthe taxis-system 

ut  = V(ki(u)(Vu—k2(u,v)7v)) +f(u,v), 	in 9 x {t >— 01 
V t  = 	 k c L\v+g(u,v), 	 in 9 >< {t > 01 

(39) 	0 = 	 k i (u) - h(u, v) 	 on 09 x {t > 01 On 
0 = 	 ‚ 	 on0x{t>0},Ov  

where all coefficient functions are continuous and k 1  (u), k. > 0, k 1  (u) = 0 for u 
Furthermore let f (u, v), h(u, v) <0 for u > ü and all v E JR and on every compact 
subset of JR2  the inequalities 

h(u, •) 2‚ 1 0  —h(u, .) 2‚ 0
äv 

 —h(u, 
) 

2 < ki (u) 

hold and assume that the initial data (uo , VO)  satisfy uo  <ii. 

We see that this system satisfies the conditions ofTheorem 19 with 

M = {(u, v) e JR2 1  u < ü}. p(u, v) = (maxt0, u_ü}) 

and 
(  

A(u,v) 	
k 1  (u) —k 1  (u)k2 (u, v) \ = 

0 	k, 	) 
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Now we have to check the conditions for the boundary data 1 = (h, 0)T  We set 

* 
	
(ki 	0 A 	(k+k1k) 

Thus we have L = A*O with 9 = (h/k i3 O)T .  We see that OTA*O  can be bounded uni- 
formly and that the analoguous statements also hold for the partial derivatives 	andau 

TV . Thus we conclude with Theorem 19 the following: 

Ifthe initial data (Uo, Vo) satisfy uo <ü, then the solution of system (39) satisfies u(•, t) < t for 
all t> 0. 

In contrast to this result for weak solutions the next Theorem [3, Satz 2.40] is a 
strong (local) comparison principle for classical solutions of system (38). Before citing 
this result we have to introduce "sets ofcomparison" and "comparison surfaces". 

Definition 3 For i = 1, ..‚ 1 and a domain V c IRM  let thefunctions P i  belong to the 
dass C 1 , 1  (V, IRM),  where p, ispiecewise ofclass C' (V, IRM)  and thefunctions j belongloe 

to the dass cj. (' IR). Then we definefor each y e V the sets ofcomparison 

My  := {z eV Q j (z) <s(z), i= 

andfor i = 1, ...‚ 1 the ‚-boundary 

OM := {z e aM c V 1 Qj(z) = 

Definition 4 Let (Vy )YEA  denote a continuousfamily of sets V 1  c V c IRM,  with V as 
in the previous definition. Furthermore let there be given functions P e C (V) and 

e C
l 
 (A) such that for each compadt set K c IRM  andfor each relatively compact set 
oc  At c A there exist positive constants cand band a continuousfamily ofprojections 

with 

r(z) - zl <dlo(z) - ()l and 179(z) 7~ 0 

for ally e A andz e M,. Furthermore let there be afinite number ofsets V with 

k0 

V = 	V'such that oIV e C () and 

7r ,(Vk n V) c Vk 

for all K = 1,.., k0  andy e A*  is satisfied. Then we will call the surfaces V fl {p = 

surfaces of comparison. 
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Now let us turn to the strong comparison result for the equation 
m 	 1 	 m 

(40) Bo(u(y))Dou(y) = A(u(y)) Z a, 0 (y)DDu(y) - 	 B(u(y)) E b,0 (y)D 0u(y) 
i=1 	 i,p=l 

tfl 

+ Z C,0 (y,u(y))(Du(y) . Du(y)) + F(y,u(y)) 

where we additionally assume that A, B,, F and C, are locally Lipschitz continuous in 
u and uniformly continuous in y E A, and that the functions b1, are bounded on 

Theorem 20 (Alt) Let us assume that (M)K is afamily of sets of comparison. Ad-
ditionally we assume that für each z e V, for which y E A and i e { 1, ...‚ I} exist such 
that z E D1M 5, thefollowingproperties are satisfied: 

1721(z) 7~ 0, Vg(z) 	IR V(z) 

and thepoints of discontinuity ofV2 1  lie on afinite System ofsmooth surfaces in V, which 
intersect the surface {z e V 1 pj(Z) = (z)} in each such z e DM transversally. Let us 
suppose thatfor eachpair (' ) 

and thefamilies ofsets (V)YEA  with 

V, := {zeV 1 21  (z) <i(Z),  

there exist continuousfunctions 
() 

and t i  on A>< V such that thefollowing threeproperties 

	

are satisfied on 	y E A. 

1. There are continuous functions )‚ .\ ....... on V such that für all z E V with 
= (y) andy e A such that 

(41) VQ1 (z) . A(z) = i(z)vQ(z) )(z) > 0 

(42) V01 (z) . Bo(z) ) = (z)Vp1 (z), 	(z) > 0 

(43) Vo(z) . Bi(z) = )(z)V(z) +pi(z), )(z) E IR 

(44) and p1 (z) E [V gi ( z)]L c IR M,1 = 1, ...,s. 
2. Let C(y, z) c JRtm M,  (z e V) denote für every y E A a (un(form in y E A*) locally 

Lipschitz continuous, givenfamily ofsets. The matrix W(y) c IR" denotes the 
positive definite root of the symmetric matrix (a u ,, (y)) and pi  denotes for each 
jE {1,..,I} a continuous vectorfield on V such that (z)VQ(z) = 1 für all 
z e V. Furthermore let us assume that für ally E A, z e V with g1(z) = ( 

y) and 

w e P(W(y) . C(x,z)) := ((W(y) . C(x,z)) - ((W(y) . C(x,z)) . V0(z))p 1 (z)) 

(45) 	(z) 	min {Wk V2 (z) 'Wk} 	 'Wk 

k=I - 	 - 	 jI k1 

	

- 	 W(y) 
;) 

(y)Vp,(z) ' C(y, z)wk, wi] > ‚(x, z)w2 - ti(y, z) 

3. Let S(y o , A) denote the set of all points y E A such that there exists a continuous, 
piecewise C" curve y with 7(0) = y o  and y(t) E Afor all t > 0, which is the inte- 
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gral-curve to one of the vector fields —X o , ±X1, ...‚ ±Xm . The generalized Hessian 
matrix Hc j (x) ofthe second derivatives (D,D 1 ) ofthefunction is then deflned 
asfollows: 
Denote for all e e IR' by 'y the solution curve of the vector field Z eX, with 
'y(0) = y. Then we set 

-yz) L= 

with 

dg(0) := limsup 
g(t) - g(0) 

 

	

t-O 	t 

for a Lipschitz continuousfunction g on JR. 

Then, for ally e A and z c V with e i  (z) = (y) thefollowing comparison condi-
tion should hold: 

Vp 1 (z) F(y,z) + tj(y,Z) 

	

(z)Do(y) - 	a,(y)H(y) + 

+ 	 72 p1  pj )(z) + VQ(z) C(y, z)[p 1 (z), P i (z)]) D1s(y)D(y) 
'=I 	 - 

- 	
(: ö)D;si(Y)D(Y) 

Here Cj(y, z) defines thefunction 

(46) Cj(y,Z) = 	sup 	
{- 	

max(Wk(y)»(y)(y)V2Q(z)wk) 
EP(W(y)-C(X,Z)) 	k=1 k zcVk 

1/2 

W(y)V(z). (C(y,Z)[Wk,pj(y)] + C(Yz)[(z)wk])} 

The case = 0 and c, > 0 is allowed, (fD,  can be chosen identically equal to zero. 

Thenfor every solution 11 c C2(A , IRM) of(40) with Du(y) e C(y,u(y)) andu(y) E M y  

for ally C A we have thefollowing statements: 

1. Ifthere isa i e {1, ...‚I} anday 1  E A with u(y,) e 	then 11(t) c t9 Mfor all 
S(y1 ,A). 

2. Let J c { 1, ...‚ I}, such that for every i E J there exists a yi E A with 

U(y,) E 3M 51 , then 11(t) e fl '9,M for all t e fl S(y '  A). 
iEJ 	 iEJ 

Theorem 20 is very general and technical. However it aliows together with a reformula-
tion ofHopf's maximum principle for systems (see [3, Lemma 3.2, page 63]) to find ad- 
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ditional hypotheses under which the solution of certain boundary value problems re-
main in the interior of the sets ofcomparison. Furthermore it is possible to prove a gen-
eral invariance theorem for parabolic systems. Here we only mention an application of 
these theorems to autonomous parabolic Neumann boundary value problems. There-
fore let us once again consider the following problem: 

= 	_(A(u)_u) +F(u), 	in 9 x (0,7- ) (f c  IRN 

= «u), 	 Ofl arN X [O,r] 

where we assume that F, e C (V, IRM)  and A E C (V, IRMM)  with det(A) > 0. 

Theorem 21 (Alt) Let e Cj (V, IR), V c IRM  (i = 1, ...‚ 1) denote givenfunctions 
andlet Q c JR' be also given. For q e Q the set M q  is definedas 

M q :={zEVg j (z)_<qj ,i1,...,I}. 

Let q°  e Q be given, such that the initial condition u(0, x) e M qo is satisfledfor all 
x E Q x {t = 01. Furthermore we assume that there exists a solution w E C 1 ([0,ro],IR') 
ofthe system of d(fferential  inequalities 

d --w(t)> sup {Vp 1 (z).F(z)}, i=l,..,I, 0<t<70  
ut 	zEajMq 

such that w (0) > q' i = 1, ...‚ 1 and a positive, continuousfunction o  on [0, To],  such that 
thefollowing conditions are satisfledfor 

Q := {q E IR' 1 3t c [0,ro] with w(t) < qj < w(t) + o (t) for all i = l,...,J}: 

Vp1 (z) f 0 holds for all z E JRM with a q G Q and z e aj M q . Furt hermore 
VQ(z) 	 JR V(z) holds on the "edges" of0M q  and g ispiecewise C2". For 

S-„~ i,zEOsMq 
allz E 0jM q  withq e Qandi e {l,..,I}wehave. 

1. Vg 1 (z)A(z) = ). t (z)Vp 1 (z), )(z) > 0 
2. V 2 Q1 (z)A(z) > Oon [VQ(z)],forall/. = 1,...,k 0  withz E V. 

3. Vg(z) b(z) <0. 

Thenu(t,x) e M(f)forall(t,x)  e f x [O,ro]. 

This Theorem aliows us to make statements on the time asymptotic behaviour of some 
special cases of the solution of Keller-Segel type models. For example (see also [3, Beis-
piel 5.18, pages 109-111]) let us consider the system 

= v((Vuxu)Vv)) +(—au), in Q x {t> 01 
(47)  l v =Av - 6v + 7u, 	 in f x {t > 01 

On 	 0 = an 	 on 	x {t > 0}, 
- 	 ' 

JB 105. Band (2003), Heft 3 	 155 



Übersichtsartikel 	1 	HistorischerArtikel 	1 	Buchbesprechungen 

where k1 > 1 and ' ß, a, 6, 'y are positive constants. We define rn0 = kl - 1 > and 

rn0 	(u\ (u,v) = v — --log - ---- j + 1  
—(u—rno). 

kix 	\rn0J ki 

Then 

V(u,v) = (c 	(i _0)i) and V(u,v) .F(u,v) =—(_ au)(1 —) +u - 6v. 

We now set 

	

1 	‚' 
i (u, v) = —v, P2  (u, v) = P (u, v), g (u, v) = v + 	( u - rno - mo log 

(MUO ki \  

and 

	

q E JR3  with qi = —a, q2 = a --- (mo log (- 
	

- + mo) and q3 = a 
kix 	arno 	a 

for some 0 < a <a+.  The set ofcomparison M q  is then convex. Now let us addition-
ally assume that 

o < -y < 0,  — , ( 1 mo  

holds. Let (u, v) denote the solution of the system (47) and let a > 7rn0/6 be minimal 
and a > 0 be maximal such that with q°  defined analogously as above u(0, x) E M qo is 
satisfied for all x e ft Ifwe set 

a(t) = ae_öt +(l - e 6 ), t > 0 

and choose a as the solution ofthe ODE 

a(t) = 7u(t) — 6a(t), a(0) = a 
dt 

where u(t) <3/a is the uniquely defined by the equation 

(a—u(t» ß 	 +rnolog +- -(t) = —kia (t) 

then we see for the analogously defined q(t) that u(t, x) e M q ( t ) for all (t, x) e 9 x 
[0, ). The function a+(t)  converges as t — oo monotone decreasing to a = 7rno 16, 
and the function a(t) converges as t - Dc monotone increasing to a 

-y/316a <a which is the unique solution of the equation 

rnolog(6t)) — ( - kix)a(t) + 0  + kixrno = 0. 

Thus we see that the set M q  with the corresponding q, is a global attracting set for all 
positive solutions of(47). 

Wolfgang Alt's Habilitation from 1980 contains many results more. However a 
complete presentation of his nice results would expand the present work too much. 
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Thus this short presentation of some of his resuits should be enough. 1 refer the inter-
ested reader to [3] for more resuits, more applications and more examples of the invar-
iance principles derived by W. Alt. 

8 Conclusions and personal comments 

There are of course still many open problems in connection with the various approaches 
that have been studied for the Keller-Segel model. 

This paper dealt solely with the parabolic model proposed by Keller and Segel for 
the aggregation phase of mobile species caused by chemotaxis. However there are also 
different approaches to chemotaxis and hence also numerous different models describ-
ing chemotaxis. First of all, one must always keep in mmd that the model one uses is 
based either on a microscopic or a macroscopic approach and always depends on the 
species studied. Thus transport and hyperbolic models for chemotaxis have also been 
proposed. For example transport and hyperbolic models for chemotactical movement 
have been studied in [4, 5, 35, 38, 39, 56, 58, 60] and [114]. The connection between che-
motaxis equations as the parabolic limit of velocityjump processes or transport models 
for chemotaxis has been studied in [4, 5, 22, 59, 68, 117] and [118]. 1 refer to [38] for sur-
veys on different models for chemotactical movement and to [60] for a survey on the hy-
perbolic approach to chemotaxis. 

Of course there are many publications presenting experimental data on chemotactic 
effects and the influences of changes in the motility or the chemotactic sensitivity of the 
given species (see for example [36, 37]). Models which take the chemotactical movement 
of n populations according to k sensitivity agents into account have been proposed in 
[3, Beispiel 2.47, page 58], [32, 77, 80] and in [156, 157] by G. Wolansky. 

Wolansky has studied a generalization of the Keller-Segel model for n populations 
in the absence ofconflicts. He showed that under certain assumptions a conflict free Sys-
tem of n populations admits a Lyapunov functional. Using this functional he investi-
gates the existence of steady state solutions via variational methods. Furthermore, he 
investigates time-periodic solutions in a parameter range where a Lyapunov functional 
does not exist. 

In [32] a chemotaxtis system for two populations in case of a "conflict of interests" 
(according to the expressions in [157]) is studied. The system studied in [32] considers 
the two populations A and B where population A is attracted by a substance P and re-
pelled by substance Q, while population B behaves the other way around. The popula-
tions are assumed to move chemotactical positive in direction of a higher concentration 
of their attractant and chemotactical negative away from higher concentrations of their 
repellent. The evolution equation for substance P depends only on population A and P 
itself, while the evolution equation for substance Q depends only on population B and 
Q itself. Using an appropriate scaling and some mathematical necessary simplifying as-
sumptions, the authors show that the existence of stationary solutions depends on the 
solvability of a two-parameter-dependent nonlinear second order boundary value pro-
blem with exponential nonlinearities. Furthermore the authors prove the existence of 
nontrivial solutions and characterize the regions for nontrivial solutions in the para- 
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meter-space. The presented bifurcation analysis in [32] shows that the total rescaled 
mass of the two populations plays the role of a bifurcation parameter for the existence 
of nontrivial stationary solutions. 

In [77, 80] a model for n-populations is studied that takes competition and chemo-
taxis in a chemostat into account. 1 refer the interested reader to these two references 
for more details on that particular model and the resuits achieved. 

Beside those results for the chemotactical movement of n populations, also the effect 
of multiple attractant gradients on chemotactical movement has been studied in [144] 
and numerical solutions for the corresponding models have been calculated in [40, 41]. 
Numerical analysis for the Keller-Segel model has been performed, for example, by Ga-
jewski and Zacharias using a chemotaxis version of the well-established TOSCA code 
for solving semiconductor problems and by Nakaguchi and Yagi studying the full dis-
crete approximation ofthe Keller-Segel model by Galerkin Runge-Kutta methods [104, 
105]. The transport chemotaxis model is dealt with in [21] and [41], for example. 

The results available for systems related to the Keller-Segel equations such as the 
Othmer-Stevens model are so numerous that 1 mention only a few [81, 116, 145] and 
[159]. The well-posedness of the Othmer-Stevens model follows directly from the results 
by Rascle [121]. 

Of course, the functional forms appearing in the original Keller-Segel model can 
vary from species to species and some explicit models for the cAMP oscillation have 
been proposed (see [84] for the so called Martiel and Goldbeter model, [115] for a survey 
on the oscillatory cAMP signaling in Dictyostelium discoideum and [124] for the de-
scription of the role of cAMP in the development of Dictyostelium discoideum). The 
Keller-Segel model has also been used to describe different problems. For example, in 
[88] the Keller-Segel equations have been proposed for strip pattern formation in alliga-
tor embryos. Angiogenesis has also been proposed as another application of Keller-Se-
gel type models (see for example [27] including references). The large number of applica-
tions and of possible functional forms results directly in a large number of models de-
pending on the considered problem. In some particular papers this has also resulted in 
the addition of a third equation to the Keller-Segel model (4) or the rediscovery of a 
more complicated version of the Keller-Segel model. This results from attempts to de-
scribe more complicated pattern formations during the aggregation phase of mobile 
species such as the attempt to describe spiral waves during the aggregation (see, for ex-
ample, [138, 148] and [149] for such extended models). 

At the conclusion of this survey 1 would ask the reader to allow me a personal com-
ment. The references given in this text are far from complete. 1 have tried to give the in-
terested reader a brief summary of the latest developments in the Keller-Segel model. 
Thus, this article is intended as continuation of Evelyn Fox Keller's article "Assessing 
the Keller-Segel model: How has it fared" of 1980 [76]. lt is left to the reader to decide 
whether 1 have succeeded. 

Acknowledgement: 1 thank Prof. Dr. Wolfgang Alt for allowing me to include the results 
from his Habilitation in this summary ofthe Keller-Segel system. 
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• Equivariant Degree Theory 

2003. xix. 361 pagr.s. Cloih. 

€98,— ED]. ISBN 3-11-017550-9 

(dc Gruyier Scrics in Nonlincar Analysis and Applicasinni 0) 

Carlo Bardaro, Julian Musielak, Gianluca Vinti 

• Nonlinear Integral Operators and 
Applications 
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Joachim Weidmann 
Lineare Operatoren in 
Hilberträumen 

Teil II: Anwendungen 
2003. 4045. 
(Mathematische Leitfäden, 
hrsg. v. Klaus D. Bierstedt, 
Günther Trautmann, 
Gottfried Köthe) 
Br. €39,90 
ISBN 3-519-02237-0 
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Inhalt 

Spektrale Teilräume eines selbstadjun-
gierten Operators - Sturm-Liouville-Ope-
ratoren - Eindimensionale Diracope-
ratoren - Periodische Differentialopera-
toren - Ein-Teilchen-Schrödingeropera-
toren - Separation der Variablen und 
Kugelflächenfunktionen - Spektraltheo-
ne von N-Teilchen-Schrödingeropera-
toren - Grundbegriffe der Streutheorie - 
Existenz der Wellenoperatoren - Ein ein-
dimensionales Streuproblem 

Das Buch 

Die im ersten Teil des Buchs dargestell-
ten Grundlagen der Theorie der linea-
ren Operatoren in Hilberträumen wer-
den hier benutzt, um die Spektralthe-
orie von Ein- und Mehrteilchen-Schrö-
dingeroperatoren sowie des Dirac-
Operators eingehend zu untersuchen. 
Eine einfache Darstellung der Metho-
de der Separation der Variablen und 
der Kugelfunktion erlaubt es, viele 
Operatoren durch Separation der Vari-
ablen auf einfache zurückzuführen 
und damit sehr detaillierte Resultate 
über deren Spektren zu erzielen. Die 
Grundlagen der "einfachen" Streuthe-
orie, sowie deren wichtigste Resultate 
der letzten Jahrzehnte werden aus-
führlich dargestellt; abschließend wer-
den die Grundprinzipien der Mehr-
Kanal-Streuung entwickelt. 
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Grundlehren der mathematischen Wissenschaften 

* 

J. Jacod, A. N. Shiryaev 

Limit Theorems for Stochastic Processes 
The authors, twa of the international leaders in the field, propose a systematic 
exposition of convergence in law for stochastic processes, from the point of view of 
semimartingale theory, with emphasis an results that are useful for mathematical 
theory and mathematical statistics. This leads them to develop in detail Same par-
ticularly useful parts of the general theory of stochastic processes, such as martin-
gale problems, and absolute continuity or contiguity resuits. The book contains an 
introduction to the theory of martingales and semimartingales, random measures 
stochastic integrales, Skorokhod topology, etc., as weil as a large number of results 
which have never appeared in book form, and some entirely new results. 

2nd ed. 2003. XX, 661pp. (Grandlehren der mathematisches Wissenschaften, Volame 288) 
Hardcover€ 119,95; sFr 194,00; £84,00 ISBN 3-540-43932-3 

J. Martinet 

Perfect Lattices in Euclidean Spaces 
This book discusses a beautiful and central problem in mathematics, which 
involves geometry, number theory, coding theory and group theory, centering an 
the study of extreme lattices, i.e. those an which the density attains a local maxi-
mum, and an the so-called perfection praperty. 

Written by a leader in the field, it is closely related to, though disjaint in cantent 
from, the classic book byJ.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices 
and Groups, published in the same series as vol. 290 

2003. XVIII, 523 p. )Grundlehren der mathematischen Wissenschaften, Volame 327) 
Hardcover 89,95; sFr 149,50; £ 63,00 ISBN 3-540-44236-7 

M. Van der Put, M. F. Singer 

Galois Theory of Linear Differential Equations 
Linear differential equatians form the central topic of this volume, Galois theary 
being the unifying theme. A large number of aspects are presented: algebraic theo-
ry especially differential Galois theory, formal theory, classification, algarithms ta 
decide solvability in finite terms, monodromy and Hilbert's 21st problem, asymp-
tatics and summability, the inverse problem and linear differential equations in 
positive characteristic. 

2803. XVII, 438 p.  )Grandlehren der mathematischen Wissenschaften, Volame 328) Hardcover 
89,95; sFr 149,50; £63,00 ISBN 3-540-44228-6 

For further information on the series 

www.springer.de/math/series  

Please order from 
Springer. Customer Service. Haberstr. 769126 Heidelberg, Germany 
Tel.:+49(0)6221-345-0• Fax: +49(0)6221-345-4229 
e-mail: orders@springer.de  
or through your bookseller 
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UNIVERSITAT BASEL 

Assistenzprofessur (Tenure Track) 
in Analysis 
Am Mathematischen Institut der Universität Basel ist zum 1. April 2004 
eine Assistenzprofessur (Tenure Track) in Analysis zu besetzen. Bewerber-
innen und Bewerber müssen in Mathematik promoviert sein. Lehrtätigkeit 
im Anschluss an die Promotion ist von Vorteil. 

Von den Bewerberinnen und Bewerbern wird selbständige Forschungs-
tätigkeit in Richtung Partielle Differentialgleichungen, Dynamische 
Systeme, Numerische Analysis oder Angewandte Analysis erwartet. Ein 
starkes Engagement für Lehre und Forschung auf hohem Niveau wird vor-
ausgesetzt. 

Die Universität Basel strebt eine Erhöhung des Anteils von Frauen unter 
den Dozierenden an. Bewerbungen von Frauen sind deshalb besonders 
willkommen. 

Bewerbungen mit Lebenslauf, Publikationsliste, Sonderdrucken von fünf 
Arbeiten, Forschungsplan, Bericht über Lehrerfahrung sowie Namen und 
Adressen von fünf Referenzen sind bis zum 31. Oktober 2003 zu richten an: 

Prof. Dr. Marcel Tanner, 
Dekan der Philosophisch-Naturwissenschaftlichen Fakultät 
der Universität Basel 
Klingelbergstrasse 50 
CH-4056 Basel 
Schweiz 

Kontaktadresse für zusätzliche Informationen: 
Prof. D. Masser 
Mathematisches Institut 
Rheinsprung 21 
CH-4051 Basel 
Schweiz 
masser@math.unibas.ch  
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Susanne Schmitt / Horst G. Zimmer 

• Elliptic Curves 
A Computational Approach 

2003. Approx. n, 361 pages. Hardeover, 

€ 78,— [D 1  • ISBN 3-1 1-016808-1 
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2003. xv. 59 pagcs. 1 froerispiccc. Hardcover. 

6 128,— D • ISBN 3-1 1-01 -350-6 
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• Heinz Bauer: Selecta 
Edited bv Herbert Hever, N)els Jacob and Ivan Netuka 
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