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Vorwort
Jahresbericht der Deutschen Mathematiker-Vereinigung, 105. Bd. 2003, Nr. 3

Vorwort

Zu den vom DMV-Prisidium beschlossenen Neuerungen beim Jahresbericht gehort
auch die Moglichkeit, Nachwuchswissenschaftlern eine Chance zu bieten, sich einer
breiten Offentlichkeit zu prasentieren. In diesem Heft finden Sie den Ubersichtsartikel
von D. Horstmann iiber das Keller-Segel Modell in der Chemotaxis. Dariiber hinaus
kommen wir damit dem Wunsch vieler Leser nach, anwendungsbezogene Beitriige der
Mathematik zu publizieren, die in diesem Fall tiefliegende Methoden der Analysis ver-
wenden.
Aufgrund der Umfangsbeschrankungen konnen in diesem Heft keine Buchbespre-
chungen erscheinen, denen aber in Heft 4 ein groBerer Anteil eingerdumt werden wird.
A. Krieg
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From 1970 until present:
The Keller-Segel model in chemo-
taxis and its consequences |

Dirk Horstmann

Abstract

s Keywords and Phrases: Chemotaxis equations, steady state analysis, global exis-
tence, finite time blow-up, invariant sets

= Mathematical Subject Classification: 35B30, 35J20, 35J25, 35J65, 35K 50, 35K 57,
92C17

This article summarizes various aspects and results for some general formulations of
the classical chemotaxis models also known as Keller-Segel models. It is intended as a
survey of results for the most common formulation of this classical model for positive
chemotactical movement and offers possible generalizations of these results to more
universal models. Furthermore it collects open questions and outlines mathematical
progress in the study of the Keller-Segel model since the first presentation of the equa-
tions in 1970.
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1 Introduction

Mathematical analysis of biological phenomena has become more and more important
in understanding these complex processes. Thus, the number of mathematicians study-
ing biological and medical phenomena and problems is continuously increasing in re-
cent years. One such biological topic is the movement of population densities or the
movement of single particles. Changes in the environment of mobile species can influ-
ence its movement. For example, humans sense their environment and given a particu-
lar situation or the state of the environment, they make their decisions as to where to
move. For example we might be attracted by a tantalizing smell and move towards it,
since we expect a delicious food, or we move away from a place if there is a repellent
odor. Animals and humans also use this effects (for example) to attract mating partners
with special colorful feathers or with enticing perfumes etc. In [89, 90] one can find the
silk moth Bombyx mori as an example of a species that uses a special odor to attract a
mating partner. During mating season the female moth secretes a scent caused by a
pheromone bombykol which attracts the male to move in direction of the increasing
concentration of this scent. This helps the male moths to find the female. Before pre-
senting another example where changes in the environment affect the movement of a
mobile species let me cite the following anecdote from the German news magazine
“DER SPIEGEL” 36/1998 [46] that is said to have happened in the late 1950s at Prince-
ton University:

“The genius was stunned. In the late 1950s Albert Einstein watched disbelievingly a film of the
young scientist John Tyler Bonner at Princeton University. The star of the movie was an unim-
pressive tiny creature: an amoeba called Dictyostelium.(...) As soon as “Dicty”,(...), starts to be-
come hungry it undergoes a miraculous metamorphosis.(...) The Dictys become one.(...) Einstein’s
question is still unsolved: Why does Dicty undergo a deadly intermezzo as a complex multicellular
organism to live then alone and autistically?” (Quoted from [46] translated by the author.)

The cellular slime mold Dictyostelium discoideum was discovered by K. B. Raper in
1935 and in the subsequent years aroused the interest of many scientists. Nowadays
Dictyostelium discoideum is a model organism for biomedical research of the National
Institutes of Health (NIH). One reason for the growing interest in this cellular slime
mold was caused by the fact that “development in Dictyostelium discoideum results only
in two terminal cell types, but processes of morphogenesis and pattern formation occur as
in many higher organisms” (see [107, page 354]). This raised the hope of biologists that
studying this cellular slime mold might aid in the understanding of the secret of cell dif-
ferentiation. But what initiates the change from a single cell organism to a complex mul-
ticellular organism? And how does this process take place?

During its life cycle a myxamoebae population of the Dictyostelium grows by cell divi-
sion as long as there is sufficient nourishment. When the food resources are exhausted
the myxamoebae spread over the entire domain available to them. After a while one cell
starts to exude cyclic Adenosine Monophosphate (cCAMP) which attracts the other myx-
amoebae. The myxamoebae begin to move towards the so-called founder cell and are
also stimulated to emit cAMP. The myxamoebae aggregate and start to differentiate.
At the end of the aggregation the myxamoebae form a pseudoplasmoid, in which every
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myxamoebae maintains its individual integrity. This pseudoplasmoid moves towards
light sources. After a time a fruiting body is formed and spores are spread. Thus the life
cycle begins again. For more details on the life cycle of the Dictyostelium I refer to [15],
for example.

A reaction to an external stimulus is generally called taxis and is then specified by
describing the reason for the reaction. Therefore, there are many different tactical re-
sponses such as chemotaxis, galvanotaxis and phototaxis. In this article I will focus on
chemotactical movement of mobile species which can lead to various different pattern
formations.

Chemotaxis is the influence of chemical substances in the environment on the move-
ment of mobile species. This can lead to strictly oriented movement or to partially or-
iented and partially tumbling movement. The movement towards a higher concentra-
tion of the chemical substance is termed positive chemotaxis and the movement towards
regions of lower chemical concentration is called negative chemotactical movement.
Thus, the Bombyx mori and the Dictyostelium discoideum are two species that move in
a chemotactically positive manner towards the higher concentration of the bombykol
resp. the cAMP. The substances that lead to positive chemotaxis are chemoattractants
and those leading to negative chemotaxis are so-called repellents.

Chemotaxis is an important means for cellular communication. Communication by
chemical signals determines how cells arrange and organize themselves, like for instance
in development or in living tissues. A large number of examples for mobile species be-
having in a chemotactical manner are known. In addition to the above mentioned two
examples, I would also like to draw attention to a third species, the bacterial strain Rhi-
zobia meliloti. As described in [38], this bacterial strain responds chemotactically to root
exudates isolated from the soil of leguminous plants. The bacterial strain in the sur-
rounding soil of the plants are guided to nodules in the roots of nitrogen-fixing plants
by a chemical gradient. Therefore, they play an important role in agricultural ecology.

One aspect during positive oriented chemotactical movement is the formation of
cells (amoebae, bacteria, etc) amounts during the responds of the species population to
the change of the chemical concentrations in the environment. Such aggregation pat-
terns often require a certain threshold number of individuals. Therefore, depending on
the case in question, that is the species being observed, such threshold phenomena
should be reflected in the model. For example aggregation in Dictyostelium is only pos-
sible if the total number of myxamoebae in the population is larger than a threshold
number of myxamoebae. In [26] the threshold value of 5 - 10* myxamoebae per cm? is
given for Dictyostelium discoideum. This chemotactical effect has been observed in ex-
periments to demonstrate chemotaxis of bacteria (see for example [120]). Positive and
negative chemotaxis can be studied in petri dish cultures. If the bacteria are placed in
the center of the dish of agar that contains an attractant, the bacteria will exhaust the lo-
cal supply and then move outward following the attractant gradient they have created.
This results in an expanding ring of bacteria. To demonstrate negative chemotaxis one
can place a disk of repellent in a petri dish of semisolid agar and bacteria. The bacteria
will then move away from the repellent. This movement away from the repellent will
lead to the creation of a clear zone around the disk.
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Alternatively, one can demonstrate chemotaxis by observing bacteria in the chemi-
cal gradient produced when a thin capillary tube is filled with an attractant and lowered
into a bacterial suspension. While the attractant diffuses, the bacteria collect and move
up the tube. The observed positive chemotactical effect in this experiment is the forma-
tion of bacteria (myxamoebae, cells, etc.) bands. Such and similar experiments have
been carried out for example by Adler [1]. Adler’s observations correspond to the for-
mation of traveling waves and pulses that spread through the population density. Thus
an interesting question is whether or not the mathematical models describing chemotac-
tical movement have traveling wave solutions.

These phenomena have motivated a large number of scientists to study chemotaxis
and to use the mathematical language to describe the observed phenomena. The inten-
tion of the present survey is to collect the results for a classical model describing chemo-
tactical movement, to expose the lines of research.

The outline of the first part of this survey is as follows:

In the second section two different approaches for modeling chemotaxis will be in-
culded. This section will also introduce the “classical” chemotaxis model by Keller and
Segel, the center of our considerations for the remainder of the paper. The third section
is devoted to steady-state analysis for this classical model by Keller and Segel done so
far. It will be shown that all the effects demonstrated in the analysis depend on the func-
tional forms of the three main processes during chemotactical movement. They are:

a) The sensing of the chemoattactant which has an effect on the oriented movement
of the species.

b) The production of the chemoattractant by a mobile species or an external
source.

c) The degradation of the chemoattractant by a mobile species or an external ef-
fect.

Within the context of steady-state analysis the focus will be on a linear chemotactic sen-
sitivity function but will also collect the results for different versions of the Keller-Segel
model. When appropriate I will summarize results for other sensitivity functions in a ta-
ble at the end of a section. Section 4 will deal with the possibility of an explosion of the
solution in finite time in the case of a linear sensitivity function. Here I point out the dif-
ferent lines of research in chronological order. This can be accomplished without losing
clarity in the results. Section 5 addresses questions asked in [69] on the possibility of ex-
plosion of the solution in finite time in the case of a linear sensitivity function. This sec-
tion is then followed by generalizations of these results for other more general versions
of the classical model in Section 6. In the seventh section of the present article I will pre-
sent some comparison results for some general versions of the Keller-Segel model
proved by Wolfgang Alt in his Habilitation [3]. This section, however, will be somewhat
technical. At some places in the text questions will be formulated that arise from the re-
sults stated in the article. These questions are partially answered in subsequent sections,
but some are still open problems and might be worth further study. I will close this first
part of the summary of results for the Keller-Segel model with some brief comments on
other approaches and models for chemotaxis.
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In the second part of this survey [67a] I will turn to special solutions for the Keller-
Segel model in chemotaxis. It will summarize the results on self-similar and traveling
wave solutions for this classical chemotaxis model. The outline of [67a] is as follows:

After a short introduction I will turn to the results on self-similar solutions. Then I
will go a bit more into detail on traveling wave solutions for Keller-Segel type systems.
Known results will be presented and discussed. Furthermore I will discuss which func-
tional forms for sensing, producing and degrading the chemoattractant might cause
resp. favor the existence of traveling wave solutions. I will also sketch some results on
traveling front solutions for a chemotaxis system with population growth. Finally I will
close this summary of results for the Keller-Segel model with some brief comments.

2 Different perspectives to model chemotactical movement
and the formulation of the classical chemotaxis equations

Modeling chemotactical movement of mobile species can be done from two different
perspectives: either from the microscopic or from the macroscopic perspective. Both ap-
proaches have been used over years and the derivation of the macroscopic equations
from the microscopic, or to be precise the validation of the passage to the limiting equa-
tions is still a topic that is studied by a large number of scientists and depending on the
model is still an open problem.

2.1 The macroscopic perspective

The first approach that should be presented here is the macroscopic perspective where
one considers the whole population respectively the density of the population at one
place and one time directly. This approach leads to a continuous reaction-diffusion
model where the diffusion of the population density is modeled with Fourier’s and
Fick’s laws and in which the reactions are viewed as functions of the population density
and possibly some external signal or control substance.

In the year 1970 Evelyn Fox Keller and Lee A. Segel used this perspective to present
a system of four strongly coupled parabolic partial differential equations, which de-
scribes the aggregation of cellular slime molds like the Dictyostelium discoideum. Let
u(t, x) denote the myxamoebae density of the cellular slime molds and v(z, x) denote a
chemoattractant concentration at time ¢ in point x. To model the aggregation of a cellu-
lar slime mold population they assume in [71] the following basic processes that take
place during the aggregation phase:

(a) The chemoattractant is produced per amoeba at a rate f(v).

(b) There exist an extracellular enzyme that degrades the chemoattractant. The con-
centration of the is enzyme at time 7 in point x is denoted by p(¢, x). This enzyme
is produced by the myxamoebae at a rate g(c, p) per amoeba.
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(c) The chemoattractant and the enzyme react to form a complex £ of concentration
n which dissociates into a free enzyme plus the degraded product.

n
v+p = E2p+ degraded product

r—1

(d) The chemoattractant, the enzyme and the complex diffuse according to Fick’s
law.

The balance of the myxamoebae density u(z, x) in any control volume D (which holds
for example in the special case of Dictyostelium discoideum aggregation) implies the
equation

d
(1) = [u(t,x)dx=— [ (J®(x)-n(x))dsS.
af e

Here J™) (¢, x) denotes the flow of the myxamoebae density. This flow contains accord-
ing to Fick’s law a part that is proportional to the density gradient and according to
Fourier’s law for the heat flow a part that is proportional to the chemoattractant gradi-
ent. Thus we see that: J®(¢,x) = k;Vv — k; Vu. As a chemical substance the chemoat-
tractant diffuses and we get

@ dgl / W(t,%) dx = 0V (1, D) — / T, x) - n(x))dS,
D oD

where QU (¢, D) denotes the produced chemoattractant v(¢, x) per domain and time vo-
lume. The flow J©)(¢, x) is given by: J*) (¢, x) = —k,Vv. Assuming the analogous equa-
tions for the enzyme and the complex, and taking the basic processes into account we
derive at the following system:

U = V (ki (u,v)Vu — ka(u, v)Vv), xe, t>0
Vi = kcAv —rivp +roim+uf (v), xe, t>0
D: = k,Ap—rivp+ (roi+r2)n+ug(v,p), x€Q, >0
(3) 77: = kyAn+rivp — (r-1 +r2)n, xe, t>0
Ou/on = Ov/On = Op/On = On/on = 0, x€dN, t>0
u(O,x) = U()(X), V(O, X) = Vo(X), X € 99
p(oa x) = po(x)v 77(0» x) = no(x)a X € Q,

where r_;, r; and r, are constants representing the reaction rates mentioned in assump-
tion (c). Here Q denotes a bounded domain in IR" with boundary 9.

Let us simplify the chemical processes in the life cycle via assuming that the complex
is in a steady state with regard to the chemical reaction and that the total concentration
of the free and the bounded enzyme is a constant. Thus one gets a simplified formula-
tion of this original Keller-Segel model that has already been proposed by E. F. Keller
and L. A. Segel themselves to reduce their original system of four strongly coupled
parabolic equations to a model that is as simple as possible. Thus their motto that “iz is
useful for the sake of clarity to employ the simplest reasonable model ” (see [71, page 403])
leads them to the following system of “only two” strongly coupled nonlinear parabolic
equations:
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u = V(ki(u,v)Vu—ky(u,v)Vv), x€Q, t>0
(@) Vi = keAv — ks(v)v + uf (v), xe, t>0
Ou/on = ov/on = 0, x€eo, t>0

u(0,x) = up(x), v(0,x) = vo(x), x €.

However, it might be necessary to remember the original system if one tries to describe
certain pattern formations during the aggregation of some particular species. It is possi-
ble that the reduction to two equations that was done in [71] was too restrictive to cover
all observable generated patterns during the aggregation of mobile species.

2.2 The microscopic approach

From the microscopic perspective one interprets the movement of species populations
as a consequence of microscopic irregular movement of single members of the consid-
ered population that results in a macroscopic regular behaviour of the whole popula-
tion. This then leads in a parabolic limit to reaction-diffusion processes, however, in this
case the passage to the continuum limit of the microscopic problem and thus studying
the resulting, continuous partial differential equations has to be valid and justified.
Usually it is assumed that in a particles population each single particle moves around in
a random walk. Leaving the justification of the limiting process open, this approach
gives us at least a formal way to derive reaction-diffusion processes from the micro-
scopic point of view.

For example in [116] H. G. Othmer and A. Stevens used the microscopic perspective
and started with a continuous-time, discrete-space random walk for a single particle in
one space dimension. Restricting themselves to one step jumps and assuming that the
conditional probability p;(¢) that a walker is in i € Z at time ¢ — conditioned on the fact
that it begins in i = 0 at # = 0 — evolves according to the continuous time master equa-
tion
() = T1 (W) pios + Toa W) i = (T7 (W) + T (W)

Here 7 (-) are the transition probabilities per unit time for a one-step jump to i £ 1,
and (77 (W)+T j(W))*1 is the mean waiting time at the i” site. It is assumed that
these are nonnegative and suitably smooth functions of their arguments. The vector W
is given by W = (---,w_;_1/2, W_is W_ix1/2,"**, Wo, W12, - - -). For generality and in con-
text with a self-attracting reinforced random walk analyzed by Davis [28] the density of
the control species w is defined on the embedded lattice of half the step size. As (5) is
written, the jump probabilities may depend on the entire state and on the entire distribu-
tion of the control species. Since there is no explicit dependence on the previous state
the process may appear to be Markovian, but if the evolution of w; depends on p; then
there is an implicit history dependence, and thus the jump process by itself is not Mar-
kovian. However, the composite process for the evolution (p, w) is a Markov process.
There are three distinct types of models that are considered in [116], which differ in the
dependence of the transition rates on w;: (i) strictly local models in which for example
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T ,i are equal, (ii) barrier models in which for example 7 ,i( W) = Ti(Wiz1/2), and (iii)
gradient models for example with 77", (W) = a + B(r(w;) — 7(wi_1)) and T, (W) =
a+ B(1(w;) — T(wiy1)) for @ > 0 and a function 7 of the control substance.

Considering a grid of mesh size 4 and setting x = ik the formal expansion of the
righthand side of equation (5) as a function of x to second order in / leads

1. incase (i) to
o =hK Kol
ot 0x?

and so with an assumed scaling , 1(1)1/{1 0)\}12 = D, where X has dimension ¢!, to
the limiting problem o

(T(wp) + O(h*)

o _p&
6t = Daxz (T(W)p)7

2. in case (ii) with the same scaling to

O _po o
o~ Dox (T(W) 6x>’

3. and in case (iii) once again with the same scaling as before to

®_p0|,(20 _ 55002
o~ Dax ["(pax 26T(W)ax>]‘

Assuming various possible evolution equations of the control substance w this leads
formally from a random walk of a single particle to a limiting diffusion equation for the
probability of one particle to be located in x at time t. Of course one can also study these
equations as an ad hoc approach for particle densities, but their derivations are then
only formal approaches and by far not rigorous. The key problem to derive the limiting
equations from the multi particle random walk is the interaction of the particles via the
control species. A rigorous derivation of limiting equations in these cases is not done
yet. Simulations of these are presented in [116] and [141].

The first rigorous derivation of chemotaxis equations from a microscopic model,
namely an interacting stochastic many-particle system, has been done in [139] and [143].
In [143] Stevens proved that for large enough particle numbers the dynamics of the be-
low given interacting particle systems are well described by the solution of chemotaxis
systems which for this case describe population densities. Explicit error estimates are
also given. For the derivation it was assumed that every particle interacts mainly with
those of the other particles which are located in a certain neighbourhood of itself. The
neighbourhood is macroscopically small and microscopically large. As a consequence
the interaction range between the particles is shrinking as the number of particles goes to
00, while the number of particles in the shrinking neighbourhoods is also growing to co.

So let the subscript # mark the terms related to bacteria and the subscript v mark the
terms related to the chemical substance slime particles. Let S(M,t) = S,(M,1)
+ Sy(M, t) denote the set of all particles in a M-particle system. the particles are num-
bered consecutively by taking a new number for each new-born particle. PX (¢) € RY,
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k € S(M, t) describes the position of the kth particle at time 7 > 0. Furthermore let 6,
denote the Dirac measure at x € IR?, d € N. Stevens considered the following measure
valued empirical processeS'

£ Sa (1) Z Spk (1
keSu M.1)
1
t Sa,() == > 6,k , and
MkeSv(M,t) u®

SM(I) = SMu(t) + SMV(I).
The dynamics of the particles depend on the following smoothed versions of Sy, Sar,:
S‘Mu = (SMu * WM * WM)(X), S‘Mv = (SMV * WM * WM)(X)

where W), and W), are moderately scaled functions of a fixed symmetric function W,
(e.g. a Gaussian): Wy = MW (M®/?x) and Wy = M®W;(M%/x), where o and &
are constants that for technical reasons have to fulfill certain smallness conditions (see
[143, page 4]). Setting up the corresponding Fokker-Planck equations for each particle
and taking the particle interaction into account she ends up with the following equation

(6) dPX (1) = xar (t, PX,(2)) Vg, (2, PE,(0))dt + A/ 2udWH (1)

where W*(.) are independent IRY-valued standard Brownian motions, x> 0 is a con-
stant and x(z, x) is given by the equation x (2, x) = x(8u, (¢, x), 51, (¢, x)) with a
smooth function x : RT x R" — IR™.

Under some technical assumptions she ends up with the weak formulation of the
classical chemotaxis system

u, = V(uVu—x(u,v)uVv)
{ Vs nAv — y(u, v)v + B(u,v)u
where Syr, — u, Sy, — v as M — oo in probability, n > 0 is a constant and (-, -) and
B(-,-) are smooth, positive functions on IR™ x IR™. The derivation of the limit dynamics
is done by extensions of techniques used by Oelschlager [112]. For further results on
these aspects we refer the interested reader to [116, 142, 139, 140] and [143].

Another paper that should be mentioned in the context of the derivation of the Kel-
ler-Segel equations as a model for population densities from the kinetic equations is [4].
Denoting the density of individuals moving at (¢, x) in direction ¢ and having started
their run at time 7 by a smooth function o(¢, x, 0, 7) W. Alt started in [4] with the differ-
ential-integral system

(7) gt (t,%,0,7) + o U(t X,6,7) + 0V (c(t, x)o(t, x,0,7)) = —B(t, x, 6, 7)o(t, x,0,7)

fort> 0,08 !(= the unit sphere in n-dimensional space), and speed c¢(¢, x) of an in-
dividuum from the beginning of the run that stops at time ¢z and point x, with a given
probability 3(z, x, 8, ) per unit time. Here we have that

(txn,O—/ /ﬂ(thT)(txHT)k(thn)d()dT

0 gN-1
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for each nn € SV~!, where k(t, x,6,7) denotes the given probability of a new chosen di-
rection 7 after an individuum has stopped a run with direction 6 at (¢,x). W. Alt shows
that under some additional boundedness assumptions and hypotheses relating the size
of some appearing parameters the density

oo

u(t, x) := / o(t,x,0) db = / /U(t,x,O,T) dr | df

sN-1 sN-1 0

satisfies the first equation of the Keller-Segel model.

Last but not least I should mention the results from C. S. Patlak [118] in this section.
In his paper from 1953 C. S. Patlak derives the partial differential equation of the ran-
dom walk problem with persistence of direction and external bias. Here persistence of
direction or internal bias means that the probability a particle travels in a given direc-
tion is not necessarily the same for all directions, but depends only on the particle’s pre-
vious direction of motion. External bias means that the probability a particle travels in
a given direction is dependent upon an external force on the particle. However, instead
of speaking of the probability that a particle is at a point, Patlak speaks of a large num-
ber of particles moving around and therefore of the density of the particles about a
point as a measure of the required probability. Thus in his picture of a random walk he
speaks of a particle traveling in a straight line for a certain length of time 7 with an aver-
age speed ¢ before turning, where the turning means a change in direction of the parti-
cle’s motion. To make the idea of a random walk completely explicit — as opposed to
diffusion — Patlak assumes that the particles have negligible interactions with each other
and thus collision between the particles can be ignored. So let me list up the assumptions
that Patlak uses throughout his paper:

1. The particles have negligible interaction with each other.

2. Each time the particle turns it start off afresh, with no “memory” of its previous
cand 7.

3. The amount of time spent in turning is negligible compared to the time the parti-
cle spends traveling between turns.

4. During a unit length of time the number of particles in each small reagion, as
well as the distributions of ¢ and 7, remain approximately the same.

For the net displacement of a particle Patlak assumes that the probability of travel
in any direction after turning and the distance of travel in a given direction are not ne-
cessarily the same for all directions. Now using the assumptions above he derives a
modified Fokker-Planck equation. From this the partial differential equation for the
random walk with persistence and external bias is obtained, which is more or less the
first equation of the Keller-Segel model. Even though these results by Patlak are older
than the paper by Keller and Segel system (4) is known as “the classical chemotaxis mod-
el” resp. as “the Keller-Segel model in chemotaxis”.

Since it is not the goal of the present paper to go into the precise details of the deriva-
tions and approaches of [4, 116, 118, 139] and [142] we now leave this topic of the differ-
ent possibilities to model chemotaxis and move to the main goal of the present paper,
namely a review of the achieved results for system (4) which — as we have seen — can be
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derived from the macroscopic and microscopic perspective on chemotactical move-
ment.

3 Linear stability analysis for the uniform distribution and nonconstant
steady state solutions

Studying the steady state problem of the model (4) is already a challenging mathemati-
cal problem, showing a large variety of interesting aspects and uses a lot of astute math-
ematical techniques. Some tools used for the steady state analysis for the Keller-Segel
model performed until now were techniques from the calculus of variations to show the
existence of nonconstant stationary solutions and the existence of spike solutions. One
tool used in this context is for example the mountain pass theorem by Ambrosetti and
Rabinowitz [146, Theorem 6.1., page 109]. But let us proceed step by step to illustrate
the way of progress on this topic.

In their paper from 1970 E. F. Keller and L. A. Segel studied in the case of two spa-
tial dimensions the stability of a uniform state (uo, vo) for the species and the chemical
attractant. Studying the effect of small (time dependent) perturbations of these uniform
distributions they found by Taylor expansions in # and v of the right hand sides of the
equations in (4) around the uniform state the following instability condition. The uni-
form distribution is unstable if

k> (o, vo)f (vo) 4 uo.f"(vo) > 1
ki (o, vo) (k3(vo) + voky(vo)) — k3(vo) + voki(vo) =

or equivalent if

kea (uo, vo)vo uof" (vo)
& B ebE T

since a uniform state (o, vo) satisfies the equality uo f(vo) = voks(vo). Here Keller and
Segel call the uniform solution stable if the time dependent perturbations of the uniform
distribution decrease with time. On the other hand they call the uniform distribution
unstable, if these perturbations lead to solutions of (4) that increase in time.

Even though Keller’s and Segel’s stability analysis of the uniform state in [71] and the
presented instability criterion is valid for a very general formulation of the system, the
next “landmark” in the studies of the Keller-Segel model was the paper by V. Nanjun-
diah [106]. In that paper Nanjundiah performs a non-linear stability analysis for some
versions of the Keller-Segel model in space dimension N = 2. In a linear stability analysis
he first re-derives the instability criterion for the uniform distribution of myxamoebae
and cAMP. Then his non-linear stability analysis for the system given by the equations

u = V(Vu—uVae(v)), xeQ, t>0

v = keAv — v + au, xeN, t>0
ou/on = ov/on = 0, xeo, t>0
u(0,x) = wup(x), v(0,x) = wo(x), x € Q,

where k., 7, « are positive constants strictly larger than zero and ®(v) denoting a che-
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motactical sensitivity function, leads him to one key statement that is mentioned in
[106, page 102] for the case of a linear or a logarithmic chemotactical sensitivity function
®(v). He states the following:

“The end-point (in time) of the aggregation is such that the cells are distributed in the form of 6-

function concentrations.”

We want to sketch Nanjundiah’s arguments leading to the above expectation for the
case of a linear sensitivity function. So V. Nanjundiah considered in this case the follow-
ing steady state system:

0 V(Vu —uVv), x € Q,
9) 0 = Ay —v+u, x € Q,
0 Ou/on = 0v/dn, x e .

I

For a general solution (u, v) of this system we see that the mean values over Q of  and v
are equal to the same constant. The first equation of (9) motivates us to define a new
function v(x) by u(x) = 1(x)e"™. In general 4 is strictly positive and only at those
points equal to zero, where u is equal to zero. We now conclude from the first equation
that 0 = V(Ve") and therefore 4 satisfies the equation Ay + VyyVv =0 in Q C IR?
with Neumann boundary data at 9Q. If we restrict ourselves to functions (u, v) that are
both finite everywhere we see that ¢ = ue™". However the equation for v implies that
this function cannot attain a critical point in €, since at such a point the gradient
vanishes and Ay would be either strictly positive or strictly negative. According to the
boundary conditions Hopf’s maximum principle [31, Hopf’s Lemma, page 330] implies
that ¢ is equal to a constant. Thus u(x) = const - ¢'*). This however implies that u and
v attain their extrema at the same point in (2, since  is a monotonic function of v and as
a consequence from the first equation of (9) we see that Vu — uVv = 0, i.e. the popula-
tion current vanishes everywhere in ). A result, independent from the reaction terms of
the second equation.

However this result contains the assumption that the functions « and v are finite
everywhere in {2 and therefore 1 is finite in 2. So if the time dependent equations de-
scribe aggregation, such an assumption then has to break down in the points where the
aggregation takes place, i.e. in the aggregation centers. From the fact that for the time
dependent problem the L'-norm of the solutions is uniformly bounded by the L!'-norm
of the initial data we see that the set of points where aggregation takes place has to be a
set of measure zero.

In [106] V. Nanjundiah also elaborated the fact that the singularities can only be of
o-function type. Therefore he remarked that the trivial solution satisfies the equations
(9) pointwise. The mass condition on the solution can only be satisfied if the solution
has singularities. Since we have from the previous arguments that u = Ke* we get for v
the problem Av+ Ke' — v =0 with homogeneous Neumann boundary data on 9.
From this equation one can derive all possible steady state solutions. Furthermore a
uniform solution v = const =: L always exists, where L is defined by the mean value of v
over (2.
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Figure 1: The connection between the values of the constants K and L.

Figure 1 shows the connection between K and L. We see that possible non-constant
steady state solutions can have values of K in the range of the interval [0, Le~%]. For
K = 0 there are two possible values, namely L = 0 and L — oo.

Furthermore V. Nanjundiah showed that all solutions between the one with X = 0
and the uniform solution are unstable if the uniform one itself is unstable by imposing
small time dependent fluctuations on an arbitrary solution at time ¢ = 0. In view of (8)
the uniform solution is unstable if # = v = vy with vy > 1 is true.

Nanjundiah’s paper was followed by two papers which contain conjectures for the
asymptotic behaviour of the solution of the Keller-Segel model for the space dimensions
N =1, N =2and N > 3. In[24] S. Childress and J. K. Percus pointed out that the ar-
guments used by V. Nanjundiah are independent of the dimension of space in which ag-
gregation occurs. However they showed that singular behaviour of the solution is in fact
a phenomenon that is space dependent. In their paper they restricted themselves to the
(as they called it) minimal system given by the equations

u, = V(Vu — xuVv), xeQ, t>0
(10) v = k Ay — v + au, xe t>0
0 = Ou/dn = 0v/on, xeo, t>0

u(07x) = M()(.X), V(O,X) = Vo(x), X € Qa

which (as mentioned before) is due to some simplifying assumptions done by V. Nan-
jundiah in [106] and is nowadays the most common formulation of the chemotaxis
equations. Their studies and their performed asymptotic expansion analysis (see [24,
page 236-237]) lead to the following possible time asymptotic behaviour for the solu-
tion of system (10):

“In particular, for the special model we have investigated, collapse cannot occur in a one-dimen-

sional space; may or may not in two dimensions, depending upon the cell population; and must, we
surmise, in three or more dimensions under a perturbation of sufficiently high symmetry.”
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Here Childress and Percus refer that aggregation proceeds to the formation of é-func-
tions in the cell density as chemotactic collapse. Their analysis and conjecture for N = 2
and 2 a disk was confirmed by the result in [25], where S. Childress gives an asymptotic
expansion describing the imminent collapse of a radially symmetric aggregate of chemo-
tactic cells. However the studies of the stationary problem continued independently
from this conjecture and the report on the time independent problem should be closed
first until the time asymptotic behaviour of the solution of (10) becomes the main sub-
ject of the present considerations in the upcoming sections.

The papers by Childress and Percus were followed by the studies of stationary solu-
tions done by R. Schaaf. In [128] she analyzed solutions of the system

0 = V(ki(u,v)Vu—ky(u,v)Vv), x€Q, t>0
(1) 0 = kAv + g(u,v), xe, t>0
Ou/on = ov/on = 0, x€o, t>0

u(0,x) = up(x), v(0,x) = w(x), x €.

with general nonlinearities satisfying the conditions

1. Q c IR" is a bounded open region with smooth boundary.
2. ki,kr : R" x R — IR" are twice continuously differentiable and the ODE

L 1(s) = ko, ) s 1,

has a unique solution r:IR" — IR" for any initial condition r(sy) = ro,
So,¥o € R".
3. g:R" x R" — IRis twice continuously differentiable and g~! ({0}) # 0.

via bifurcation techniques. Furthermore a criterion for bifurcation of stable nonhomo-
geneous aggregation patterns is given. In [128] R. Schaaf focused on the properties of
stationary solutions of the Keller-Segel model with homogeneous Neumann boundary
data in a very general setting. She shows that the stationary problem of the Keller-Segel
model in a more general setting than the cases studied by V. Nanjundiah can also be re-
duced to a parameter-dependent single scalar equation. More precisely she shows the
following theorem:

Theorem 1 (Schaaf) A pair (u,v) € {we X |w(Q) CR"} x{wex|w@)cC
IR™} is a solution of (11) iff, for X € RY,
(12)  u(x) = p(v(x), ) for all x € Q and k.Av + g(p(v(x),\),v) = 0.

Here the space X is defined as {w € Z | Ow/On =0} where Z is the space
C*P(Q,R) with 0 < B < 1 for N > 1 and C*(Q,IR) for N = 1. The function ¢(s, A) is
given by r(s) with
%r(s) = ko (r, 5) /R (r, 5), r(1) = A
Then bifurcation methods are used in [128] to find natural bifurcation points. Further-

more R. Schaaf gives a stability analysis for the constant stationary solutions of the Kel-
ler-Segel model.
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For ki(u,v) =1, ka(u,v) = xu and g(u,v) = —yv + au the stationary solutions of
the Keller-Segel model solve the equation

(13) k.Av—yv+ alexp(xv) =0in Q

with homogeneous Neumann boundary data. Of course the question of positive, nontri-
vial solutions for this equation arises. The existence of nontrivial radially symmetric so-
lutions for this equation has been shown in [11, Proposition 1] under the assumption
that v > 0, but Biler did not consider the nonsymmetric case (The Neumann boundary
data implies that there are no solutions provided v = 0.).

Using variational techniques introduced by M. Struwe and G. Tarantello in [147] J.
Wei and G. Wang [153], T. Senba and T. Suzuki [133, 134] and in [63] myself proved for
Q c IR? independently the existence of nontrivial solutions of (13) without symmetry
assumptions for 47 < axA/k.. The existence of nontrivial solutions of (13) in the case
that ax\/k. < 4r follows from arguments that will be mentioned later in the present
paper.

The idea of the existence proof is based on the studies of the functional

Faxr/iee (V) : /IVvl +7V2dx——log(|§12|/ev dx |,

where v € D := {v € H'(Q) |v has mean value equal to zero over }. One easily no-
tices that v = 0 is a strict local minimum for F,, /i, in the case that
ax)\

where p; is the first (non zero) eigenvalue of the Laplacian with homogeneous Neu-
mann boundary data. Then one recognizes that for a smooth domain Q and
axA > 4k, there is a sequence {v.},., C D with

v.(x) = log ; / dx,
(2 +7lx—x[)?) 19 52+7r|x—xol )’

where X is an arbitrary point on 9€2, such that
Foxrjke(Ve) = —oo and ||Vv5||L2(Q) —o0oase — 0.
As a consequence there exists a vy € D such that
Foaxrke(v0) < 0 and |[v0||H1 > 1.
One now defines
P={p:[0,1] = D | p is continuous and p(0) =0, p(1) = v}
and sets

k(YX/\/k(‘ = pnelg zln[% ‘Fax/\/kc(p( ))
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for all axA/k. > 4. Using the fact that the mapping

aXA/kc — kckax)\/kc
axA

is monotone decreasing for all ax\/k. > 4m we see that it is differentiable for almost
every axA/k. > 4. The rest of the proof then consists of the construction of a Palais-
Smale sequence for F /. that contains a subsequence that converges strongly in
H' () to a critical point of F, ax\/ke- The construction of the Palais-Smale sequence can
be done exactly as in the paper by M. Struwe and G. Tarantello [147]. The existence of
the nontrivial critical point of the Functional F,,,, /ke over the set D allows us to con-
clude the existence of a nontrivial solution of equation (13). This can be seen easily. If
one introduces the new function

e X
W= xv— ﬁ A v dx
we get from (13) the Euler-Lagrange equation of the minimizing problem inf F, axr/ke (V)
over the set D. Thus the existence of a nontrivial critical point of the functional gives us
also the existence of a nontrivial steady state solution of the Keller-Segel model with a
linear sensitivity function.
With different methods than those just mentioned Y. Kabeya and W.-M. Ni also
proved the existence of positive nontrivial stationary solutions of (13) in [70]. Further-
more they showed the following result:

Theorem 2 (Kabeya & Ni) Let Q C IR% Suppose that t = \eX' has two positive solu-
tions. Then there exists a non constant solution v. of (13) provided

e:=k./vy

is sufficiently small. Moreover, there exist constants C; >0, C, >0, § >0, K > 0 and
€ > 0 such that:

s
supv. < Ci, igfvs < Gyt and /(aZIVvE|2+'yv§)dx > Ke?
Q
Q

for any 0 < e < . Furthermore for sufficiently small € > 0 the solution v, has exactly
one local maximum point in ), which must lie on the boundary 0.

This theorem is similar to results that have been established for the stationary Kel-
ler-Segel model with a logarithmic chemotactical sensitivity. In this case the transforma-
tion introduced by R.Schaaf in [128] leads to the problem

(14) dAw—w+w? =0, in Q with Ow/0n =0, on Q.
In [83, 108] and [109] the authors prove the existence of stationary solutions of this

equation for Q CIRY with N>2 and 1<p< (N+2)/(N—-2) if N>3 and
1 < p < 00if N = 2. Their results for this problem can be summarized as follows:
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Theorem 3 (Ni & Takagi) Let wy be a least energy solution of (14), i.e. a critical
point of

Bl = /%(d|Vv|2 +v?)
Q

p—j_—lv'f'ldx

such that

Ja(waq) = cq where ¢q := lllrellf Iax Ja(h(2)),

in which
[ :={he C(0,1]; W*Q)) | h(0) =0,h(1) = e}

and e # 0 is a nonnegative function in W'2(Q) with J,(e) = 0. Then w, has at most one lo-
cal maximum in Q) and this is attained in exactly one point which must lie on the boundary,
provided that d is sufficiently small. If P; € O is the unique point at which maxwy is
achieved. Then

lim H(Py) = max H(P)
where H(P) denotes the mean curvature of 9) at P.

Of course many generalizations of this result have been published in the recent years
(see for example the papers by [47] and [123]), but it is not the goal of the present paper
to mention all these results. Therefore I leave this to the interested reader and turn now
to the time dependent problem. However it is recommended to recall the presented re-
sults when looking at the time asymptotic behaviour of the solution in the upcoming
section. Recalling the results of the present section will help to understand the results
for the time asymptotics of the solution and will help to understand which behaviour
one might expect for the solution. Before we now definitively turn to the time dependent
problem let us explain some terms used in the present section. We have seen that there
are different effects that one can expect. In some cases we spoke of aggregation and in
other cases of a special form of aggregation namely the formation of §-singularities.
This was sometimes called chemotactical collapse. Before we turn to the time dependent
model we therefore now introduce three important effects in the mathematical lan-
guage.

Definition 1 Let (u(t,x),v(¢,x)) be a solution of (4) for the corresponding initial
data (uo(x), vo(x)). We say that the model describes aggregation, if

li{g;gfllu(t, Wlroo@) > o ()l Lo

and [[u(t,)|| o) < konst for all t. The solution blows up resp. is a blow-up solution if
(2, )| oo () 0 |[V(2, )| ooy Decomes unbounded in either finite or infinite time, i.e.
there exists a time Ty with 0 < Tpax < 00 such that

lim sup |[u(z, -)[[ oo (@) = 00 or limsup |[|v(2,-)|| 00y = 00

t—Tmax t—Tmax

We will speak of chemotactical collapse if limsup |[u(z, -)|| ;oo () < (220 ()| oo (@) -
t—00
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Remark that this definition is almost identical to that given in [116] beside the differ-
ence in the allowed blow-up time for a blow-up solution. Furthermore remark that the
three cases do not exclude themselves, i.e. more than one case can happen for the same
solution. At the end of this section let us summarize the mentioned results in the follow-
ing table:

Table 1: Collection of results for the stationary Keller-Segel models.

Observation References
For model (4) the uniform distribution (uy, vo)becomes unstable if [71]

ko (ug,v9)v0) up S (vp) >1

ky(ugvolug " k3 (vg)-+vok} (vp) :

All solutions between the one with K = 0 (as defined in this section) [106]

and the uniform solution are unstable if the uniform one itself is.

unstable.

The stationary problem of the Keller-Segel model can be reduced [106, 128]

to the parameter-dependent single scalar equation (12).

There exist non-constant stationary solutions of the Keller-Segel [11, 63, 70, 83]
model for example for a linear and for a logarithmic chemotactical [108, 109, 133]
sensitivity function. [134] and [153]

4 The time dependent problem:
The case of a linear chemotactical sensitivity

The conjectures and observations by V. Nanjundiah, S. Childress and J. K. Percus have
been the initiating motivations for a large number of researchers to study the time
asymptotic behaviour of the solution of the system (10). There is still an avalanche of
publications running and I am pretty sure that by the date of publication of the present
paper the number will have increased once again. Parallel to the results of this section
various papers were published in which versions of the Keller-Segel model with a differ-
ent chemotactic sensitivity function were studied. I will mention these results in an up-
coming section. Thus we will only focus on results for (10) in this section resp. the up-
coming subsections.

4.1 Early results on the time asymptotics and conjectures

The first step in the analysis of the conjectures by Childress and Percus has been done
by W. Jager and S. Luckhaus in 1992. In [69] they introduced the transformation

U(t,x) := %%% and V(¢,x) :=v(¢,x) — ﬁg/ v(t, x)dx

which leads to the system:
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U, = V(VU-xUVV), xeQ, >0
(15) sVi+aV) = AV +2(U-1), xeQ, t>0
oU/0n = ov/on = 0, xeo, t>0

U(0,x) = U(x), V(0,x) = Vo(x), x €.

Jager and Luckhaus then assume that « = k.3, the constants x, k., « are of the order %
with e small and v and 3 are of order 1. Thus they get for small ¢ resp. for € — 0 the sys-
tem

U, = V(VU-xUVV), xe€Q, t>0
(16) 0 = AV+gU-1), xe€Q t>0
oUu/on = oV/on = 0, xed, t>0

U0,x) = U (x) x € Q.

Their result in space dimension N = 2 for system (16) is summarized as follows:

Theorem 4 (Jiger & Luckhaus) Let Q be a bounded open set in R?, 9 is a C'-
boundary, Uy(x) is C' and satisfies the boundary condition.

1. There exists a critical number c(Q) such that BxUy(x) < ¢(Q) implies that there
exists a unique, smooth positive solution to (16) for all time.

2. Let Q be a disk. There exists a positive number ¢* with the following property: If
BxUs(x) > ¢* then radially symmetric positive initial values can be constructed
such that explosion of U(t,x) happens in the center of the disk in finite time.

Here the notation Up(x) is used for the mean value of Uy(x) over the domain Q. More
precisely Jager and Luckhaus show the following Proposition which implies 1. of the
previous Theorem 4.

Proposition 1 (Jiger & Luckhaus) Let Q2 be a domain satisfying the smoothness as-
sumptions from the Theorem above. Let U(t, x) be a smooth positive solution to (16) and
1* the maximal time of existence, 0 < t* < co. There exists a positive number c¢1(S2) such
that t* < oo implies

klim lim Bx Up(x) /(U(l,x) — k), dx > ().
—00 t—r*
Q

Proposition 1 is shown by multiplying the first equation of (16) with ¢ = (U — k)'f_l
where k£ > 0 and m > 1. Then the second equation of (16) allows to estimate the term
—/ UVVV(U — k)" dx = — / VVV(m—r;—l(U — k)" + k(U — k)’j‘l)dx
Q Q

from above by

c(k, m) /(U — k)dx.

Q
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If the statement of Proposition 1 did not hold this estimate would allow us to find the
following inequality

%/(U —k)dx < c3(Q,k) + e3(k) /(U—k)::'dx for all t > 1,
Q Q

which would give us a bound for the L”-norms of U(¢,x) and the global existence
would follow by standard regularity arguments for solutions of elliptic and parabolic
equations.

For the proof of the blow-up statement 2. of Theorem 4, W. Jager and S. Luckhaus
studied the function

VB
M(t,p) ::/(U(!,r)—l)r drforr=|x|, 0<p<R
0

Using the equations of (16) they found that M(, p) has to solve the following initial
boundary value problem:

8, _, O ——= e
aM= 4p3p2M+ﬂon(x)apM+ﬂon(X)M,
with

N/
M(0,p) = / (Uo(r) — 1)r dr and M(t,0) = M(t,R) = 0.
0

Constructing a subsolution W (¢, p) for this problem such that W (¢, p) < M(¢, p) for all
t,pand
lim sup W(t,p) >w>0

=Tfinite p<e

for each € > 0 they proved that the solution has to blow up at time Tz in the center of
the disk. Furthermore Jéger and Luckhaus asked for more information about the blow-
up behaviour of the solution of (16). In a remark [69, page 820] they formulated the fol-
lowing questions:

“It would be interesting to know more about the set of explosion points at t*. The solution may
globally exist as weak solutions. The development of singularities after a finite time t* is another
important topic to be studied.”

Even though it was not the next paper in the chronology I now mention the results
from M. A. Herrero and J. J. L. Velazquez [50] from 1996 and M. A. Herrero, E. Medi-
na and J. J. L. Velazquez [53, 54] from 1997 and 1998 since they studied system (16) in
those papers. In [50, 55] they focused on the possible formation of é-function singulari-
ties in finite time in space dimension N = 2. Using asymptotic expansion methods in
[50] their result was the following:
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Theorem 5 (Herrero & Velazquez) Let R > 0, and let Qg = {x € R : |x| < R}.
Then there exist radial solutions of (16) defined in an interval (0, T) with T > 0, and such
that:

(17) U@,r) — 8—%5(0) +o(r)ast— T,
in the sense of measures, where 6(0) is the Dirac measure centered at r = 0, and:

P, (——
(18) () = e E02 (2] log(r) N2VRCT™ (1 + o(1))

asr — 0, where C is a positive constant depending on x. At t = T, the profile near r = 0
is given by.

(19) Ut,r) = 8;—55(0) +9(r); $(r) as in (18).

Moreover, if we set S(t) = (T —t)(sup U(¢,r)) = (T —t)U(0,¢), one has that lim S(t)
= 0o. More precisely, there holds: =

e — 1
S(t) = C\(T — 1) | log(T — 1)] VI'8T=0l a5 t — T, for some C; > 0.

So they found solutions that form in finite time a é-singularity in the center of the
disk in IR?. Furthermore they investigated a result for the whole space in the three di-
mensional case in [53, 54] and [55]. There they studied self-similar solutions and could
formulate the following statements.

Theorem 6 (Herrero, Medina & Velazquez)

1. Consider (16) in space dimension N = 3 with Q = IR®. Then, for any T > 0 and any
constant C > 0, there exists a radial solution (U(t,r), V(t,r)) of (16) that is
smooth for all times 0 < t < T, blowsup atr = 0and t = T, and is such that:

/ U(T,s) ds— C.

[x|<r

2. Consider (16) in space dimension N = 3 with Q = IR®. For any T > 0 there exists
a sequence {6,},.n With lim, .6, =0, and a sequence of radial solutions
(U.(t,r), Vyu(2,1)), that blows up at r =0 and t = T, and are such that U,(t,r) is
self-similar, and

Ui(t,7) ~ (ﬂ + 5n> ™ pa v —
X
For this solution

N(t,r):= / U(T,s)ds—0asr—0

[x[<r
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3. No radial, self-similar solution of (16) exists such that N(t,r) < co asr — 0 when
N =2, resp. when Q = IR?.,

Thus one slowly got more and more insights for the Keller-Segel model but at this
point several questions still remained open. To name a few beside the questions raised
in [69] we list the following.

1. What happens if one drops the assumption of radial symmetry of the solution
and how does in the case of blow-up the blow-up profile of the solutions look
like?

2. Isit possible to prove blow up results also for the full system (10)?

3. Can one give the precise value of the threshold which decides whether the solu-
tion might blow up or not?

As in the section before I summarize the results of this section in a table, too.

Table 2: Possible time asymptotical behaviour of the solutions of the simplified model (16).

Dimension Observation References

N=2 There exists a critical value ¢(2) such that a unique, [69]
smooth positive solution to (16) exists globally
in time if Bx Up(x) < ¢(R2).

Let Q be a disk. Then there exists a positive number ¢*
such that there exists radially symmetric positive initial
data with the following property: If 8x Uy (x) > ¢*
then radially symmetric positive initial values can be
constructed such that explosion of U(¢, x) happens in
the center of the disk in finite time.

There exists radially initial data such that the solution of [50, 55]
(16) forms in the center of a disk  a §-function singularity
described in Theorem 5 in finite time.

When Q = IR? then no radial, self-similar solutions of (16) [53, 59]
existsuch that [ U(T,s) ds < coasr — 0.
|x|<r
N=3 Let Q = IR®. Then there exists, for any 7 > 0 and [53, 54, 55]

any constant C > 0, a radial solution (U(z,r), V' (¢,r)) of
(16) that is smooth for all times 0 <z < 7, blows up
atr=0and¢=T,andissuchthat: [ U(T,s) ds— C.

|x|<r

Forany T > 0 there exists a sequence {6, },,. With
lim, . 6, = 0, and a sequence of radial solutions
(Un(t,r), Vu(t,r)), that blows upatr = 0and r = T, and
are such that u, (¢, r) is self-similar, and

U,(t,r) ~ (%C + 6, ) (4m2) ™" as r — 0. For this solution

J U(T,s)ds—0asr—0.

|x|<r
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4.2 Progress and further questions

After W. Jdger’s and S. Luckhaus’ paper in 1992 the next step was performed 1995 by
T. Nagai in [92]. In his article “Blow-up of radially symmetric solutions to a chemotaxis
system” [92] he proved the following result for the simplified system

U = V(Vu—xuVv), xe€Q,t>0
(20) 0 = Av—yw+pfu, x€ t>0
Ou/on = Ov/on = 0, xe€0, t>0
u(0,x) = up(x), x € Q.
Theorem 7 (Nagai)

1. Suppose that N =1, or N = 2 and

Bx / up(x)dx < dwy

B(O,R)

with radially symmetric uy(x). Then Ty. = oo and
SE(];’{””(@ Moo (s0,m) + I1V(2, ‘)”Lx(s(o,R))} < 0.

2. Let N > 2 and ug be radially symmetric. If

2/N (N-2)/N
0 >2N(N - 1)(%/uo(x)dx) wi / uo (x)|x|Y dx
NQ NB(O.R)
2
1
_ %ﬂx (w_,./ uo(x)dx)
Q
-~ 1 1 N
+ BxNR = uo (x)dx o up () |x[" dx
"0 B(0,R)
3/2 1/2
%(;l];s{“o(x)dx) (—N uO(x)|x|Ndx> :
B(O,R)
if N=2
+ Oy
(2N-2)/N 2/N
) (ﬁ,g{uo(x)dg <$ e uo(x)|XINdx> 5
if N>3

where wy denotes the area of the unit sphere SN=' in R, then Ty, < 0o and

limsup [[u(t, ) | 1o 5(0,.5)) = O©-

t—Tmax
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Furthermore the radially symmetric solution (u(t,r), v(t,r)) of (20) satisfies
u(t,r) +v(t,r) < K(n) for %S r<R and 0 <7< Ty

where K (n) denotes a generic positive constant depending onn € N such that
K(n) — oo as n — oo.

Thus the blow-up can only occur at the point r = 0.

While the first statement is easy to check the second is based on some subtle estimates
of the expression

My(1) :=$ / u(t, x)| x| dx.
B(O,R)

The global existence proof of solutions of (20) in one space dimension performed in
[92] illustrates in a nice way how one tries to show the existence of the solution global in
time in higher space dimensions. Therefore I first want to demonstrate this proof here.
If one integrates for N = 1 the second equation of (20) on (—R, x) one gets

X X

vx(t,x)=7/V(t,y)dy—ﬂ/u(t,y)dy-
-R

Thus we see that

R
[ve(t,x)| < B / up(x)dx on Q X (0, Tpax)-
“R

For x € 2 = (=R, R) we now obtain

R R x
2Rv(t,x) = / v(t,y)dy + / /vx(t,z)dz dy
—R -R y
and therefore
0<vtx) <B (Liare / o (x)dx.
- V77V T 2R \y
Q
Thus

[[v(#, )|l oo () < const and ||vx(2,-)|| 00 (q) < conmst for all 0 < ¢ < Tipay.

Multiplying now the first equation of (20) with u? for p > 1 and integrating the equa-
tion over (2 yields

]ﬁ% u“ldx:p_szl/Wu(p“)/dex +w-consto/u”“dx.
Q Q Q
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Now the bound of the L*°-norm of the solution can be obtained by application of N. D.
Alikakos’ version of the Moser iteration introduced in [2]. One therefore sees that the
question whether the solution exists globally in time or not depends crucially on a uni-
form bound for the L*-norm of the gradient of v. This simplified version of the Keller-
Segel model has been extensively studied by Nagai and his coauthors. Once again we
cannot follow the chronology since the different versions of the Keller-Segel model have
been studied parallel. Thus I concentrate on the results on system (20) in this subsection
and turn to the results for the full Keller-Segel model (10) resp. (15) later on. The simpli-
fied versions allow to decouple the system. Therefore techniques are available in these
cases which are not at hand for the full parabolic version. For the simplified version
(20) recent results from Nagai, Senba, Suzuki et al. give more information about the
blow-up profile of the solution and the non symmetric blow up. However their proofs
are very technical and desire fine estimates that are difficult to demonstrate in a simple
way. Thus I restrict myself to present their results in Table 3 and 4.

Table 3: Possible time asymptotical behaviour of the solutions of the simplified model (20) with
v > 0.

Dimension Observation References
N=1 The solution of the Keller-Segel model exists [92]
globally in time and is uniformly bounded for all 7 > 0.
N=2 If Bx [ uo(x)dx < 4m then the classical solution of [92, 93, 94]
Q
the Keller-Segel model exists globally in time and is [95, 98, 101]
uniformly bounded for all # > 0. If 2 is a disk and uy is and [130]

radially symmetric or satisfies u( ) = u(—x)in Q, then
this statement holds if By f up(x)dx < 8.

Letxo € Q. Ifﬁxfuo x)dx > 8rand 1ffuo )x — xo|2dx [102]

is sufficiently small then the correspondlng solution of (20)
and (16) blows up in finite time.

Assume that 02 has a line segment £, and that  lies on [102]
one side of a line £ containing £,. If furthermore
Bxfuo X)dx > 4m and 1ffu0 x)|x — xo|2dx

is sufﬁcxently small for a pomt Xxg € Ly thatis not an
end-point of £, then the corresponding solution of (20)
and (16) blows up in finite time.

If Q is a disk, u is radially symmetric and if [92]
Bx f uo(x)dx > 4ws, then there exists a constant C;

dependmg on—L f uo(x)dx such that if

0< - fuo |x| dx < C) then u blows up in finite time.
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Table 4: Possible time asymptotical behaviour of the solutions of the simplified model (20) with
4340,

Dimension Observation References

N=2 If Bx [uo(x)dx < 8m and Tyax < 0o then there exists [96, 97]
Q

apoint in xy € 9 such that

limsup [ u(t,x)dx > 2n/a.Bfor any ¢ > 0, where
t=Tmax QNB(x(,€)

a,isarootofa, — x/2 — ||u0||L1(Q),Ba*/167r = 0 such that

a, <x.
Suppose Thax < oo . Then there exist for any isolated [96, 97, 131]
blow-up point x( two positive constants §, m > m, and and [136]

a non-negative function
f € L'(B(x0,6) N Q) N C(B(x0,6) N Q\ {x0}) such that u(z, )
converges weakly in the Banach space of all Radon measures

on B(xp,6) NQto méy, +f ast — Tax, Where m, is equal
to 4n/Bx if xo € 0Q and equal to 87/Bx if xo € Q.

Suppose @ = IR* and let xo € IR%. If Bx [ uo(x)dx > 8= 199]
RrR2
andif [ up(x)|x — xo [*dxis sufficiently small, then the
RrR2

corresponding solution of (20) blows up in finite time.

N>3 If Q is a sphere and uy is radially symmetric, then there exists [92]
a constant C; depending on LN [ uo(x)dx such that if
Q

w

0< g f{ uo(x)|x|Ndx < C, then u blows up in finite time.

Suppose @ = IRY and let xo € RY.If [ up(x)|x — xo|"dx [99]
RN

is sufficiently small, then the corresponding solution of (20)

blows up in finite time.

Of course one can now draw conclusions on the possible number of blow-up points.
However I will mention these conclusions a little bit later. Thus at this point let us turn
again to a different line of research.

4.3 Analysis of the system (15)

Similar to their result for the simplified system (10) M. A. Herrero and J. J. L. Velaz-
quez achieved a very important contribution on the blow-up profile of the solution of
the full parabolic systems (10) and the system (15) with v = 0 in their papers [51] and
[52]. Using once again asymptotic expansion theory they were able to describe the blow-
up profile of system (10) and proved therefore the possibility of a §-function formation
in finite time for radially symmetric solutions as it was conjectured by Nanjundiah [106]
and Childress and Percus [24]. Their main result for system (10) is summarized as fol-
lows:
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Theorem 8 (Herrero & Velazquez) Let R > 0, and let Qp = {x € IR* : |x| < R}.
Then there exist radial solutions of (10) defined in an interval (0, T) with T > 0, and such
that:

Q1) u(t,r) — e s0) + () as t = T,
X
in the sense of measures, where 6(0) is the Dirac measure centered at r = 0, and.:

(22) o) = Se 202 (1 1 (1))

7
asr — 0, where C is a positive constant depending on x. At t = T, the profile near r = 0
is given by:
(23) u(t,r) = %5(0) +(r); $() as in (22).

Moreover, if we set S(t) = (T — t)(supu(t,r)) = (T — t)u(0, t), one has that lin; S(1)
—

= 00. More precisely, there holds:

(24) S(t) = C(T — 1)~ 'eVHRT=0 g5 t 5 T, for some Cy > 0.

The studies of the asymptotic behaviour of the solution in the non-symmetric case
began with the results of [11, 44, 94] and [158]. In [11, 44, 94] the authors introduce inde-
pendently from each other a Lyapunov functional for system (10) resp. (15) which be-
came an important tool in the then following studies of the time asymptotic behaviour
of the solution of system (10) resp. (15). This Lyapunov function is given by

(25)  F(u(t),v(2)) := Q/;;—CX IVv(e)* + ﬁvz(t) + u(t) log(u(t)) — u(t)v(t)dx.

Using a Moser-Trudinger type inequality originally formulated by Chang and Yang in
[23] the analysis of this functional shows the following:

1. The functional F(u, v) is bounded from below, if
ax/uo(x)dx < 4rk,.
Q
2. The functional F(u, v) is no longer bounded from below, if
ax/uo(x)dx > 4nk,.
Q
3. For radially symmetric functions the functional F(u,v) is bounded from below,

if

ax/uo(x)dx < 8k,
Q
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and is no longer bounded from below, if

ax/uo(x)dx > 8rk,.
Q

Now two different lines of research became recognizable. One considered system (10)
and used more PDE based methods to prove global existence and finite time blow-up
results for this system and the other was concerned with system (15) and used methods
more related to the calculus of variations. Once again one has to follow these two lines
separately to get a clear picture of the achieved results. Let us first have a closer look at
the results for (10)

431 Results for system (10)

Since the question of the well-posedness of a negative cross-diffusion system is not tri-
vial I first turn to the results on the local existence of a solution and possible regularity
results. Here one should basically mention A. Yagi [158] and T. Nagai, T. Senba and K.
Yoshida [94] whose results can be summarized as follows:

Theorem 9 Let Q) be a bounded, smooth domain in RR?. Assume ugy, vy € H'*0(Q)
for some 0 < ¢y < 1 and up(x) > 0, vo(x) > 0 on Q. Let Tyax be the maximal existence
time of (u(t), v(t)).

1. (Yagi) System (10) has a non-negative solution (u, v) satisfying

il 1€ ([0, Tesee) 2 Q) 0 €0, T} » L) N €0, Tise) » HAD))
forany 0 < ¢, < min{ey, 1/2}. Moreover (u,v) has further regularity properties:
u € C' (0, Tna) : H'(R)), v e C%((O, Tese) = HHQ))0 C%((O7 Toax) : H' ().
2. (Yagi) If Thpax < 00, then
zliTI,gax(”u(t’ ')||H1+€o(9) +[Iv(2, ‘)HHHEO(Q)) = 09,
tmsup Ju(t, ) ) = 0 for any 1 < p < o,

limsup [[v(2, -)|| y1+¢(q) = 00 for any 0 < e < €.

1= I'max

3. (Nagai, Senba & Yoshida) If

/uo(x)dx < %,

ax
Q

where © = 8 for @ = {x € R? : |x|" < R} and (uo, vo) is radial in x and © = 4x
otherwise, then the solution (u, v) of (10) exists globally in time and

sup{[[u(t, Ml zoo(@) + 176 lioo)} < oo
[ 24
The local existence and regularity results summarized in Theorem 9 above have been

achieved by using semi-group theory. A. Yagi also proved similar local existence results
for more general forms of the system (4) in [158] and I will turn to these results later.
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The bound of the L>-norm of the solution can once more be achieved by application of
N. D. Alikakos’ version of the Moser iteration introduced in [2]. Once again the basic
and most important step is to find a uniform L>°-norm estimate of Vv(t, -) for all £ > 0.
Nagai, Senba and Yoshida succeeded in finding such a bound in the case where the
functional F(u,v) is bounded from below. A. Yagi studied in [158] which norms of the
solution have to blow-up if the solution exists only for a finite maximal time of existence
Tfinire- However beside the results of Herrero and Velazquez in [51, 52] there are no re-
sults, that show the existence of initial data such that the corresponding solution of (10)
has to blow up in finite time. However there are results under the assumption that there
is a solution which blows up in finite time. Let us therefore now turn to those results,
that studies the blow-up profile and behaviour of such a solution.

Under the main assumption that there is a solution of the Keller-Segel model that
blows up in finite time 7. such that
(26) OS[ir}f F(u(t),v(t)) > 0 or

finite
lim  F(u(t),v(t)) = —0
= Tﬁnile
Nagai, Senba and Suzuki proved in [100, 102] the following results.

Theorem 10 (Nagai, Senba & Suzuki) Ler Q C IR? be a bounded domain with
smooth boundary 0S). Furthermore let B denote the set of all those points xq in Q such
that there is a sequence {xi}cx CQ and a sequence {ti}icn C [0, Thnire) with
u(t, x) — 00, tk = Tfinire and xi. — xo as k — oo. By C B denotes the set of all isolated
blow-up points, i.e xo € By, iff there exists a R > 0 such that

sup ||u(t,- -
0<i< ﬁm'tel ( )l[LOO((B(XO,R)\B(XOJ))QQ)

for any r € (0, R) with B(xo,R) := {x € R? | |xo — x| < R}. Then the following state-
ments hold:

1. Givenxy € By, wehave 0 < R << 1, m > m*, and
f € L'(B(x0, P) N Q) N C(B(x0, R) NQ\ {x0})

satisfying f > 0 and u(t, -)dx converges weakly to mé, (dx) + f dx as t — Ty, in
the set of Radon measures on B(xy, R) N Q, where

i s 8, Xg € Q
T 4w, xp € 09

2. If (26) occurs, then B = B;.

3. If (10) is radially symmetric and Ty < oo then B = {0}.

These results imply that in the case of a finite time blow-up of the solution the set of
isolated blow-up points has finite cardinality and that

O‘X””O“LI(Q)

1 <2x8(BNQ)+H§(B NN < k.
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However a better lower bound of the quantity is of interest in the non radially sym-
metric case with ax||uo||,1 ) > 87 k.. Where does the blow-up occur? Is there only one
blow-up point in the interior of {2 or are there two blow-up points at the boundary 0
in this case?

Beside the previous results Senba and Suzuki established in [135] the following re-
sults using rearrangement and symmetrization arguments. These results are similar to
those achieved independently and by other methods in [63] and [64] for system (15).

Theorem 11 (Senba & Suzuki) Ler Q C R? be a bounded domain with smooth
boundary 0.

1. If Qv is the unit disk, cx||uol|p1q) < 87k. and uo(x) = ug(—x), vo(x) = vo(—x)
hold, then the solution of (10) exists globally in time and satisfies the equations in
the classical sense, i.e. the solution is sufficiently smooth.

2. If Thax < oo then

Jim () logu(dlly ) = lim [(0¥(0)]1q) = 00

and

5 2 I . av(t) =
Jm [[Vv(9)l[z20) tler}nlax/e dx = o0,
where a > 1. L

3. If Qis simply connected , ax||u0l|L1(Q) < 8rk,, and Ty < 00 then

lim e 02dx = .
t—Tmax

a0

The last statement in particular implies together with the previous statements on the
number of isolated blow-up points in Theorem 10 that if there is a solution that blows
up in finite time for 4nk, < ax||uol|1 (@) < 8k, then the blow-up has to happen at the
boundary of the domain. However, at this stage it has to be pointed out that these re-
sults do not give the existence of a solution that blows up in either finite or infinite time.
These results always use the existence of a solution that blows up in finite time as an as-
sumption, but do not prove that those solutions in fact really exist.

Beside the analysis of the Keller-Segel system (10) on a bounded domain T. Nagai
also studied the problem on the whole space IR?. In this situation he could prove that
for ax [ uo(x)dx < 4mk. the solution exists globally in time, once again via analyzing

R2
the functional F(u, v) for Q = IR? this time. Furthermore he found several decay prop-
erties of the solution but for those results I refer the reader to [99].

Throughout this subsection we focused on the two dimensional case and left out the
other space dimensions. So what is known for the cases N = 1 and N > 3? For the case
N =1 the paper by K. Osaki and A. Yagi [113] fills the gap of the missing global exis-
tence proof for (10). Furthermore they show there that the w-limit set of the solution
contains at least one stationary solution. For the case of higher space dimensions N > 3
and a bounded domain Q c IRY I am aware of any result on the time asymptotic beha-
viour of the solution. The local existence of a solution can be established in such cases
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using the results of H. Amann [6, 7] for example. This has been mentioned for example
in [62] and [119].

4.3.2 Results for system (15)

Independent from the previous line of research and parallel to those results there were
the results for system (15). Under different regularity assumptions on the domain and
the solution than those assumed in [94] and [158] H. Gajewski and K. Zacharias proved
in [44] the local existence of a weak solution of (15) where they defined a weak solution
of (15) in the following way.

Definition 2 (Gajewski & Zacharias) A pair of functions (U(t, x), V (¢, x)) with

U € L®(0, T; LX(Q)) N L2(0, T; H'(Q)), U, € L*(0, T; (H'(Q))"),
Ve L®(0,T;L>(Q)) N C(0, T; H'(Q)),  V, € L*(0, T; L*())

is called a weak solution of (15) if for all h € L*(0, T; H'(2)) the following identities hold:

T T
O=/(U,,h) dt+//(VU—UVV)~Vh dx dt,
0 0 Q

T T
0://V,hdxdz+//(kcvv-w+(w—ax(u—1))-h) dx dt.
Q

0 0 0

Their existence result is:

Theorem 12 (Gajewski & Zacharias) Let Q C IR? be a bounded domain and its
boundary is piecewise from the class C*. For Uy € L¥(Q) and Vo € W12(Q), p > 2,
and appropriate T > 0 there is a unique weak solution of (15) with U(0) =
Uo, V(0) = Vy. Moreover, for 0 <t < T it holds t — U(t) € LY and the function
t— ||V V(Z)Hiz(g) is absolutely continuous on [0, T'.

For (15) the Lyapunov function F takes the following form:

F(U®D), V(1)) ::501;/@|VV(t)|2+7V2(t) dx+/U(t)(log(U(t))— 1)+ 1= (U®t) - 1)V (2)dx.

Q Q

In fact Gajewski and Zacharias showed that one can bound F by a functional only de-
pending on V/, namely

9]

F(U(t), V(1) > F(V (1) =$/kc|VV(t)|2 V(1) dx — | log (L/e”')dx).
Q Q

Using the Moser-Trudinger type inequality by Chang and Yang in [23] it is possible to
show that F (V') is lower semicontinuous and coercive on the set D := {V € H'(Q) | V
has mean value zero over the domain Q} if ax|Q| < 40k,, where © denotes the smallest
interior angle of the piecewise smooth domain 2. Therefore the calculus of variations
guarantees the existence of a minimizer of F over the set D. As a conclusion we get the
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boundedness of the functional F from below in this case. The boundedness of the Lya-
punov functional and the fact that for

e

( Jevw dx>

the equality F(U, V') = F(V) holds lead Gajewski and Zacharias to:

Ux) =

Theorem 13 (Gajewski & Zacharias) Let ax|Q2| < 40k,. Then there exist a sequence
tx — oo and functions U*, V* such that

U(ty) — U* in L}(Q), V() — V* in H(Q),
and

F(U(t), V(t)) — F(U*, V") as ty — oo.
Moreover the identity
Qe

(fe‘”dx)

holds, and V* is the solution of the boundary value problem

U=

—k AV +4V* = ax(U* —1) in Q, % — 0 on 54

As it has been shown in [63, Theorem 3, page 408] the previous result does not only
hold for subsequences. Furthermore the steady state might also be nontrivial in the case
where ax|Q| < 40k.. Gajewski and Zacharias presented in [44, Proposition 5.3, page
109]an example in which  := {(x,y) : 0 < x < a, 0 < y < b} denotes arectangle where

27k w2k

ab < £ £

o ax(log(4) — 1) —~

and the initial data (Up(x), Vo(x)) is given by
— X = AL
Up(x) =1+ cos( a) and Vy(x) = cos( - )

and @* > -3 )]

We then see that
F(Uo, Vo) <0= F(I,O)

and thus there has to be a nontrivial stationary solution of system (15) also in this case
and not only in the cases mentioned in Section 3.

The boundedness of the Lyapunov functional F(U, V') by the functional (V') has
several consequences that are demonstrated in [63]. However using the same sequence
as in the proof of the existence of a nontrivial steady state solution in section 3 one can
show for ax|Q| > 4k, there is a sequence of functions { (U, V;)}.-, such that

F(U.,V.) —» —ccase—0.
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Furthermore, if Q C IR? is simply connected and if ax|Q| < 87k, p € (1,87k./ax|Q|)
is arbitrary but fixed and ¢ > 1is such that 1 = 1/p + 1/4 then one can bound the func-
tional F (V) from below in the following way:

ke plQ| 2 Ty 2|10| / V)2

> | o2 X ~ 2 a ke, 192),

()2 [ (e - B jovp v ac-Diog( [ o2 as) + k(pganikolo)
N

where K(p, g, o, x, k., |2]) denotes a constant depending on p, ¢, «, X, k. and |Q2|. How-
ever this has the consequence that we have the following blow-up result which sum-
marizes the results from [61, 63, 64, 65].

Theorem 14 (Horstmann & Wang) Let Q C IR? be a smooth, simply connected do-
main and v > 0. Furthermore assume that

dk.m < ax|Q| and that ax|Q|/k. # 47m for m € N,
then there exist a constant —oo < K < 0 and initial data (U, Vo), such that
K > F(Uy, Vo)

and the corresponding solution of (15) blows up in finite or infinite time. For these blow-up
solutions the following statements hold:

e I_%iTI'rInlax H U(t, ')||L2(Q) = l—!ITIIEax HU(t, )”LOO(Q) =5

2. lim ||U(¢)log U(t)||L1(Q) = lim U(t,x)V(t,x) dx = o0

t—Tmax t—Tmax
Q
: _ - 1 V) g — i : -
3 hm VY0l = m [ dx= m ([V(E e = o0
Q

4. Ifdrnk. < ax|Q| < 8nk. and Q) is a simply connected domain, then

lim e N12gS = oo

t—Tmax

50
for every q € (87k./(87k. — ax|Q|), 00).

There are technical reasons why one has to exclude the multiples of 47 in the theo-
rem. From the biological point of view this makes no sense and there is a hint in [70]
that in Theorem 14 the statements are in fact true if one only assumes 4k.m < ax|Q|.
For v = 0 there is a similar result for radially symmetric initial data in [65]. Since this
proof is easy to illustrate I give this theorem and the sketch of the proof, too. So we can
formulate our blow-up result.

Theorem 15 (Horstmann) Let Q = B(0, R) C IR Further assume that -y = 0,
8k.m < ax|€Y| and x| /k. # 8mg, q € N,
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then there exist radially symmetric initial data (Uy, Vyy) and a constant K, such that
i( >F ( Uy, V())
and the corresponding solution of (15) blows up in finite or infinite time.

The proof of Theorem 15 is easily demonstrated. First one shows the existence of
the constant K via contradiction. Thus one assumes that there is no such constant.
Therefore there exists for @ = B(0, R) C IR* a sequence (Vm)men € D of solutions of the
equation

—kAv,, = ax (|Q|e"'"/fe"’"dx— 1> in Q

Ovm/On = on 09,
with / |Vl dx < 0o Vm € N, lim / [V V| 2dx = 00
Q
and

lim log (ﬁ / ev’"dx) =00
Q

These sequence can therefore be identified as a sequence of stationary solutions of sys-
tem (15) in the radially symmetric setting and with v = 0. Using the transformation

)

the function w, solves the problem

_ox g
2%,

Ay = emtexb, i Q
OWp/On = —%(X'”(X))’ on 9%,

with /|Vw,,,|2 dx <ooVme N, lim /]Vwmlzdx =00
m—o0
Q

and

wim+2X|x|2
ﬁ/emhﬂ}clxl dx=1Vme N.
Q

Using the results from [78] and the Sobolev imbedding theorems we see that v, is in fact
C*5(Q) provided 09 is Lipschitz and thus w,, also belongs to C>#(Q). According to a
result from Brézis and Merle [20] there exists a subsequence (W, )m en for these
(Wm) men Such that one of the following three alternatives holds:
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1. The sequence (Wi, ),, cn is uniformly bounded in L, ().
2. For each compact subset K C 2 we have:

Sup w,,; — —oo uniformly, as m; — oc.
K

3. There exists a blow-up set BS = {p\, ..., pn} C 2 and sequences
(xj’."i)je{l my © Q such that for m; — oo,

J . Jj 5
xm,- — Pjs w’"i(xmi) — 00 fOI'] =1.m

Furthermore, on each compact subset £ C Q \ BS we have

SUP Wy, — —00, a8 M; — 00
K
and

m
QX wm;+(ax/4ke)|x]? )
k(. em — Zgﬂ'qjéx:pj

J=1

in the sense of measure, where ¢; € IN.
(See [82] for the statement about the g;.)

However as it has been done in [65] one can show that none of these alternatives is possi-
ble for such a sequence of stationary solutions. Therefore such a sequence cannot exist
and one can conclude that there exists a constant K € IR (K < 0), such that for all ra-
dially symmetric stationary solutions (U, V') of system (15)

F(U,V)>K> -
holds. Now let us choose a &g arbitrary but fixed, such that K > F( Vey(x)) where

i =va{ =) e )

We see that V. (x) € W'>(£2). Now let us set

‘Q|eV€0(«\')

er(x) = feVEO (x)dx
Q

We see that U, € LT(£2) and that
F(U.y(x), Voo (%)) = F(Voy(x)) < K.

Choosing Up(x) = U, (x) and Vo(x) = V,(x) the corresponding solution of the Kel-
ler-Segel model (15) has to blow up in finite or infinite time.

Of course there are questions directly connected with the above results. The two
most important are:

1. Is the blow-up time for the blow-up solution from Theorem 14 and Theorem 15
finite?
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2. Suppose Tyax < 00, does either inf  F(U(¢), V(t)) > —co

0<t<Tmax

or lim F(U(t), V(1)) = —oo hold?

H. Gajewski and K. Zacharias gave in [44, p. 94 & 95] an example for initial data for
system (15) such that the solution blows up in the corner of a rhombic domain. They
considered the domain

_ x|, _ [Jtan(©/2) 1
Q_{(x,y)|7+7<l,a—- > ,b—\/m}

with an acute opening angle © < 7/2. For a = x = k. = 1 they used the initial data
uo(x) = Uo(x)/ Up(x),

where
Up(x) = tdte) : o) exp (— %)

with 0 < o < 1 and as Vj(x) the solution of the boundary value problem

)
on

The corresponding solution (U(¢), V' (¢)) of the equations (15) blows up in finite time in
a corner of the domain. Furthermore their numerical calculations showed that for this
solution the Lyapunov functional F(U(¢), V' (¢)) — —oo in finite time. There is also an-
other numerical example given in [43] where the initial data is such that the function
u(x,0) already has its maximum in the corner with the smallest interior angle of the
rhombic domain. The solution then blows up in this corner in finite time.

Some known results with their references are summarized once again in table 5.

AVy+ TUy(up — 1) =0 in Q, =0 on 0.
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Table 5: Possible time asymptotical behaviour of the solutions of (10) and of (15).

Dimension

Observation

References

N=1

The solution of the Keller-Segel model exists globally in
time and for any initial data uy € L*(Q), vo(x) € H'(2)
with g > 0, [, ug(x)dx = M < 00,inf.cq vo(x) > 0 the
w-limit set of the solution contains at least one stationary
solution.

If ax [ uo(x)dx < 4wk, then the solution exists globally in

Q
time and its L>®-norm is uniformly bounded for all times.
Furthermore it converges to a stationary solution as t — oo.

If drk. < ax [uo(x)dx < 8k,, then there exist initial

Q

data such that the corresponding solution of the
Keller-Segel model blows up at the boundary of 2 either
in finite or in infinite time.

If 87k < ax [ uo(x)dx, then there exist initial data
Q

such that the corresponding solution of the Keller-Segel
model blows up either in finite or in infinite time.

Furthermore there exist radially symmetric initial data
such that u(z, x) forms a é-singularity in finite time
in the center of a disk Q.

Given a blow-up solution and an isolated blow-up point xo,
we have 0 < R << 1,m > m*, and

f € L'(B(xp, P) N Q) N C(B(x0,R) N\ {x0}) satisfying
f > 0and u(t, -)dx converges weakly to méy, (dx) + f dx

as t — Ty in the set of Radon measures on B(xo, R) N €,
where m* is either 87, for xo € Q or 4r for xo € 0Q.

If the blow-up time is finite and (26) holds there exist only
isolated blow-up points.

If (10) is radially symmetric and Trmax < 0o then the set
of blow-up point consists only of the origin {0} .

IfQ = R?and ax [ uo(x)dx < 47k, then the solution of (10)
RrR2
exists globally in time.

Let € be a smoothly bounded domain in IR>. For sufficiently
smooth initial data, satisfying the boundary data there exists
a unique solution of (10) locally in time. Furthermore for all
T > 0 there exists a constant Cr, such that if the initial data
satisfies ||vo|| 2 ) < Cr; |luol| (@) < Cr and

[[Vuoll 2 @ < Cr, then the problem (10) has a unique
solution on [0, 77 x Q.

[113]

[11, 44, 63]
and [94]

63, 64, 135]

[52, 61, 64]
and [65]

[52]

[100]

991

[16]
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4.4 Results for related systems

There are some related results that should be mentioned at this point of this survey. P.
Biler studied in [11] system (10) with different boundary conditions. For system (10) his
local existence result is pretty much the same as the local existence result of Gajewski
and Zacharias [44].

However for the system

u, = V(Vu — xuVv), xeQ, t>0
= k. Ay — v + au, xe, t>0
@7 0 = Ou/On— xudv/on, x € 0Q, t>0, v(t,x) = K, * (au(t,x)),
u(Oa X) = uO(x)a x € Q,

where K, denotes the Bessel potential, Biler proves the following finite time blow up re-
sult:

Theorem 16 (Biler) If Q c RN, N > 2, is a bounded star-shaped domain (with re-
spect to the origin), then for uo(x) with sufficiently large ||uo||,1 (@) = M. there is no glo-
bal in time solution of (27).

Results similar to those results in [64, 65] have been proven by G. Wolansky in [155]
for the system

0 = V(Vu — xuVv), xe, t>0
(28) v = k.Av + au, xeQ, t>0
0 = Ou/On— xudv/on, v(t,x) = 0, x€Q, t>0

u(0,x) = up(x), v(0,x) = vo(x) x €.

This system contains an elliptic equation for the myxamoebae density and a parabolic
equation for the cAMP-concentration similar to the second equation in (10). Even
though he also has a Lyapunov function the techniques he used to prove his blow up re-
sult can only be applied to a system with Dirichlet boundary conditions for the second
equation. They fail in the case of Neumann boundary conditions as they are treated in
[64, 65]. In [155] G. Wolansky is led to an equation for the stationary solutions of his
model which is similar to problem (13). However in his case the equation is equipped
with Dirichlet boundary data, which allows him to use different arguments (more pre-
cisely the moving plane method see [31, pp. 521-522]) to exclude the first alternative of
the Brézis and Merle [20] result. In the case that is mentioned in the previous section
and [64, 65] one has to use different techniques to get rid of the possible alternatives sta-
ted by Brézis and Merle in [20].

5 Comparison of the questions asked by Jager and Luckhaus
with the results so far

Let us now take some time and let us see which questions of those asked in [69] have
been answered up to now and which remain open. W. Jager and S. Luckhaus asked

140 JB 105. Band (2003), Heft 3



D. Horstmann: The Keller-Segel model in chemotaxis and its consequences |

about more information on the set of blow-up points. We have seen in the previous sec-
tions that there exists the possibility of blow-up points in the interior and at the bound-
ary of a domain Q C IR%. Also the upper bound of the possible number of blow-up
points is sharp and known, however a better lower bound is still needed. Also the loca-
tion of the boundary blow-up points should be studied more carefully. For smooth do-
mains the boundary blow-up point should be a point of maximal mean curvature which
would correspond with the numerical calculations of H. Gajewski and K. Zacharias in
[44] for piecewise smooth domains and with the results and hints from the steady state
analysis resp. the shape of the least energy solutions.

The question whether the solution exists globally in time as a weak solution can be
negated. However it might be possible to study the problem for a different formulation
of a solution like L!-solutions. But as far as I know there has not been any attempt to
do so up to now. For the third question we turn to an own subsection.

5.1 What happens after blow-up?

In connection with the question “What happens after the blow up of the solution? ” that
was already asked in [69], we have seen that the solution does not exist globally in time
as a weak H'—solution, but is there a notation of a measure valued solution or L'-solu-
tion for the Keller-Segel model? With such a notation, which would be natural since the
solution belongs to L' () for all times, it would make sense to study the possible move-
ment of the aggregation centers in the considered domain.

Using a different approach than the idea of introducing a new notation of a solution
as just mentioned, J. J. L. Velazquez made the first step to give an answer to the ques-
tion what will happen after blow-up in [151, 152].

In [150] J. J. L. Velazquez studied the question whether aggregation at the interior
of the boundary of the domain Q C IR? takes place in a stable manner, or, if on the con-
trary, solutions exhibit a tendency to move towards the boundary. His result is that
after small pertubations of the solution found in [52], the new solution will blow up in a
manner entirely similar but in a slightly shifted point of Q at a slightly different time.
Thus his computations indicate that the possibility of aggregates with high density of u
moving quickly towards the boundary does not exist.

He then studies in [151, 152] the system

(29) w = V(Vu—-Gu)Vv), xcR? >0
0 = Av +u, xeR?, >0,

where G, () = O(eu) for a small parameter € > 0 and an increasing function Q(s) satis-
fying Q(s) = s + O(s?) as s — 0 and Q(s) ~ L as s — oo, where L > 0 is a given num-
ber. For Q(s) = 5 and € = 0 the system becomes formally system (16). For € > 0 the
solution of (29) exist globally in time under general assumptions on the initial data.
Thus it is a natural question to try to understand the asymptotics of the solution of (29)
when e approaches zero. This has been done in [151] using asymptotic expansions.
Using these methods Velazquez showed that solutions of system (29) exist, that have a

finite amount of mass M;(¢) concentrated in a neighbourhood of a set of points x;(z).
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Velazquez studies the motion of those regions with high densities of « in [151] and de-
rives a system of equations that describes the dynamics of these regions. According to
the formal limit as e — 0 his results can somehow be interpreted as a formal explanation
of the behaviour of the solution of (16) after blow up. The well-posedness of the derived
system for the dynamics of the high density regions is established in [152].

6 More general formulations of the chemotaxis equations

The original formulation of the Keller-Segel model allowed more general functional
forms than we assumed in the last section. Even though the question whether the given
functional form represents the situation in Dictyostelium aggregation in an appropriate
way should be discussed, the system is adequate to describe chemotactical movement of
mobile species. A number of possible plausible functional forms has been proposed by
E.F. Keller in [76]. Several of these proposed functional forms will also be discussed in
the upcoming subsections. Furthermore she discussed the possible existence of traveling
wave solutions, a topic which will be in the center of our observations later in this paper.
Since there is a large number of different examples for species that move positive che-
motactically and also a large variety of different models for the chemotactical sensing of
the particular species (see for example [84] for a model of the cAMP production and
sensing mechanism in Dictyostelium discoideum) it is useful to try to find a more gener-
al theory that contains a larger class of possible models. Let us see what results are
available in this cases. So let us now turn to more general formulations of the system
without having a particular biological example in mind. So we focus on the following
system of two nonlinear parabolic partial differential equations, which is given by

(30) u, = V(k(u,v)Vu—h(u,v)Vv), x€Q, t>0
vio = kAv—fv+gu,v), xe€Q, t>0

for © ¢ IRY completed with either

Oou v
31) = == = Q
(31) o n 0 on 9Q x {tr > 0},
(32) oru = 0, v = 0ondQ x {t>0},
(33) ork(u v)gﬁ—h(u v)@ =0, v = 0on 90 x {r>0}
7 On " On ’
as boundary conditions and initial data u(0,x) = uy(x) and v(0,x) = vo(x) for x € Q.
Here k, is once again a positive constant. For the functions appearing in the model the
following conditions have been considered to be reasonable: k(r,s) >0 for all
(r,s) € R x IR, the function f satisfies f (s) > const for all s € IR and 2 g(r,s) # 0 holds
forall (r,s) € R x R.

The question whether a solution to such problems exist locally in time has been stu-
died in [62] using results by H. Amann [6, 7] and in [158] using other techniques. As it
was mentioned in the previous section a Lyapunov function is a helpful tool for analyz-
ing the time asymptotic behaviour of the solution. Thus one wonders under which con-
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ditions the present system has a Lyapunov function. Therefore we turn to this question
next.

6.1 Lyapunov functions

For the rest of the present section we will use the following notations:

F(v) := /f(s)s ds and G(u,v) := —/g(u,s) ds.
At some places of the present section we will assume that
(34) / F(v) dx > k / v dx

Q Q

is true, where k; is a nonnegative constant (If we have homogeneous Neumann bound-
ary data we assume k; > 0).

Theorem 17 (Horstmann) If there exists a function R(u) such that

h(u, v) & o B
( )|:82G( ) dzR(u)]—FmG(u,v)—O,

then there exists a Lyapunov function for system (30), provided aQ:—Z G(u,v) + &‘% R(u) >0

holds true for the solutzon of (30) In the case of boundary condition (32) we have to assume
additionally that 2 % G(0,0)=0= du R (0). The Lyapunov function for system (30) is then gi-
ven by

H(u(2), v(0)) / ke |7 (0) + F(o(t)) + R(u(t)) + Gu(t), v(2))dx

A large number of examples is given in [62]. Let us here only give two examples for
which a Lyapunov function H(u, v) exists.

1. Let consider (30) with h(u,v) = u, g(u,v) = Lu?e™, k(u,v) = 1, f(v) arbi-
trary. Then we have the Lyapunov function

H(u(t),v(2)) = /%le(t)}z + F(¥(2)) +%u2(t)e“'(’)dx, ie. Ru) = u*/2.
O

2. One can also find a whole class of other examples where a Lyapunov function ex-
ists. Let us suppose that we study system (30) together with (31). Let

h(u,v) = hy(u)$(v) and g(u,v) = fh

K, 7) = <u>+”’(” h()/qs
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and f(v) be arbitrary. We see that there is a function R(u) such that

d? k(u,
E{—zR(u) = ( ()u)( h (u) /¢(S
Of course we see in this example that the right hand side has to be independent
of v. If this is the case, then there exists a Lyapunov function H(u, v) of the type
given above, which is possibly unbounded from below. This example includes
the systems studied in [44] and [119]. In [119] we have A(u,v) = u¢(v) (with
o(v) > 0), g(u,v) = u¢(v), k(u,v) =1 and f(v) = const > 0. Finally we get in
this case R(u) = ulog(u). For further results concerning some special cases of
this type of systems see [119].

In fact this result allows to make statements for a larger class of nonlinearities in g(u, v)
than those studied before for system (30) (as far as the author knows). Under certain ad-
ditional assumptions one can now formulate results for the time asymptotic behaviour
of the solution. Therefore we now make the following main assumption for the rest of
this section.

Main assumption:

(35) / G(u,v) + R(u)dx > kz/ [Vv|* dx + const with %—}- ka > 0.
Q Q

In some special cases of (30) one can show that the solution of (30) converges to a
possibly nontrivial steady state as ¢t — oo (see [44, 62] and [119]). The results of W. Alt
[3], R. Schaaf [128] and K. Post [119] concerning the Keller-Segel model in chemotaxis
seem to indicate that such behaviour can also be expected in a more general setting. The
following theorem summarizes our results on this aspect.

Theorem 18 (Horstmann) Suppose that (u(t), v(2)) is a weak solution of (30) and that
(34) as well as our main assumption (35) is satisfied. Furthermore let either

1 [ZG,v) + & RW)| /k(w,v) < ks and & G(u,) + % R(u) > ks or

2. 0< [ G(u,v) + %R(u)} exp(Z G(u,v) + 4 R(u)) < ksk(u,v) and

k(u t) v(t)) c LZ(Q)
25 G(u(1), v(1)) + L3 R(u(2))
forallt >0

be true for the solution (u(t),v(t)) of (30). Let additionally f be Holder continuous with
Holder exponent 3 < 1 such that 0 < 3 <1if N<3or3<2/N if N> 3. Finally as-
sume that | f(v)| < Ky for all v € R. Then there exist a sequence (tx),n and two functions
v* and g* such that v(t;) — v* in H'(Q) resp. in H{(Q), f(v(tx))v(tx) — f(v*)v" in L*()
and g(u(t), v(ty)) — g* in L*(Q). Furthermore
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/k(.Vv*Vgo +f(VWedx= /g*cp dx
Q Q

forall p € H'(Q) (resp. ¢ € H}()). Finally we see that

. (—[% LR +%R<u<fk)>]> — const

in L*(Q) if 1. holds and, respectively,
9 t iR
- ([au Glu(te), v(te) + & <u(rk>>]> Comt

2
in L*(Q) if 2. holds.

The previous given first example satisfies assumption 1. of Theorem 18 while the sys-
tems studied in [44] and [119] satisfy assumption 2. of Theorem 18. The proof of this
theorem goes along the line of the proof of Theorem 5.2 in [44, page 107] and can be
found in detail in [62].

Furthermore one can also formulate certain conditions under which some
LP—estimates for the solution are possible. This has also been done in [62].

More general forms of the Keller-Segel model (4) have also been studied by A. Yagi
in [158] for the case of two space dimensions and in the case of one spatial dimension by
K. Osaki and A. Yagiin [113]. In [113] the authors study the Keller-Segel model (4) with
ky(u,v) = const, uf (v) — k3(v)v = au — v and ky(u, v) = ux(v) where x(s) is a smooth
function of s € (0, co) satisfying

O ()| < e Iy
Ix"(s)| < const (s-}-S),

for 0 < s < oo, i =0,1,2 with some positive constant and exponent r. In [113] they
show that there exists a compact set of finite fractal dimension which attracts the solu-
tions exponentially.

A. Yagi studied in [158] the two dimensional case of the Keller-Segel model under
the assumptions that k; (4, v) = ¢ + ¢ju + ¢,v with a positive constant ¢o > 0 and non-
negative constants ¢y, ¢, and assuming that k> (u, v) = ux(v) with 0 < x(s) < bo (1 + %),
and that x(s), k3(s), f(s) are smooth functions of s € R™ satisfying 0 < f(s) < by,
by < k3(s) < bs(sPo + 1), where by, by, by, b3 are positive constants strictly larger than
zero and the exponent py > 0. For the initial data he assumed that uy(x) > 0 on Q,
vo(x) > o > 0 on Q belong to H'*0(Q2) with some exponent 0 < ¢y < 1 and a positive
constant y. Using semigroup theory Yagi established the local in time existence of an
unique, positive, classical solution in the same space as it has already been mentioned in
the case of a linear sensitivity function in a previous section. Furthermore he determines
blow-up norms of the maximal solution.
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6.1.1 Results on finite time blow-up

As it has been already mentioned in the section on the steady state solutions of the Kel-
ler-Segel model Nanjundiah’s conjecture also contained a statement on the time asymp-
totical behaviour of the solution of the Keller-Segel model with a logarithmic chemotac-
tical sensitivity function. Therefore we will first look at the results for this conjecture
and related results. In this subsection we consider (4) with kj(u,v)=1,
uf (v) — ks(v)v =1 (u — v), k. = L and k; (u, v) either x % or xpuv?~! for p > 0. In the lim-
iting case ¢ = 0 it is easy to show in the same way as it has been done in the case of a lin-
ear chemotactical sensitivity function that the solution exists globally in time and that
the L>®-norm of the solution is uniformly bounded for all times. Thus the interesting
cases are once more the higher dimensional ones. So let us summarize these cases:

1. Letk,(u,v) = up(v) where [ ¢(s)ds is a smooth function with ¢(s) > 0 fors > 0.

(a) Let N =1,e=0and [ ¢(s)ds be smooth on (0, c0). Then the solution of the
Keller-Segel model exists globally in time and is uniformly bounded. (See
(98].)
2. Letky(u,v) = xpuv?~! forp > 0.
(a) Let N=2and e =0. If 0 < p < 1, then the solution of the Keller-Segel
model exists globally in time and is uniformly bounded. If Q is a disk, u is
radially symmetric, [ uo(x)|x|*dx is sufficiently small and p > 1, then the

Q
corresponding solution of (4) blows up in finite time. (See [93, 98, 130].)

(b) Let N>3 and e=0. If Q is a disk, u, is radially symmetric,
] uo(x)lxl(N “2P+2 gy is sufficiently small and p > 0, then T < 0o and the
O

corresponding solution of (4) blows up in finite time.(See [93, 98, 130].)
3. Letky(u,v) = x“

(a) Let N =2ande = 0. If Q2 is a disk, u is radially symmetric, then the solution
is globally bounded in time. (See [93, 98, 130].)

(b) Let N>3 and e=0. If Q is a disk, # is radially symmetric and
Xx < 2/(N —2), then the solution is globally bounded in time. (See [93, 98,
130].)

(¢) Let N=2ande = 1.If x < 1, then the solution of (4) exists globally in time
and for T > 0 there exists a constant C7 < oo such that

5l looeiy + 02 Mgy ) < Cr-
(See [95].)
(d) Let N =2 and £ = 1. If Q is a disk, the initial data (uy(x), vo(x)) is radially
symmetric and x < 5/2, then the solution exists globally in time. (See [95].)
(¢) Let N >3 ande =0.If Qis a disk, u is radially symmetric, [ uo(x)|x|2dx is

0
sufficiently small and x > 2N /(N — 2), then the solution of (4) blows up in
finite time. (See [93, 98, 130].)
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Results similar to (3c) have been obtained by K. Post studying (4) with k;(u,v) = 1,
ka(u,v) = ud/ (v), uf (v) — k3(v)v = u¢’(v) — v and k. = 1. For the precise details I refer
the reader to [119].

Rascle and Ziti analyzed in [122] the system

u, = V(uVu—xuwPwy), x€Q, t>0
v, = —kuv™, x € Q,

where the constants x,k > 0. They constructed self-similar solutions for this system as-
suming that m < 8 = 1. For . = 0 and one space dimension they observed that the bac-
terial density concentrated in finite time at the origin. For two space dimensions and in-
itial data for the bacterial density which is zero at the origin they derived chemotactic
rings concentrated around the origin after finite time. In higher space dimensions they
achieved blow-up of the solution by an initial singularity of the chemoattractant in the
origin.

For ;1 > 0 Rascle and Ziti observed in one space dimension that there are smooth in-
itial data leading to finite time blow-up of the solution, while they were unable to con-
struct self-similar solutions in space dimension larger or equal to two for reasonable in-
itial conditions.

For m =1 and v~” replaced by a more general sensitivity function x(v) satisfying
x(s) > 0fors € R, and

infs—x—@ > —1,

520 x(s)
this system has also been studied by Corrias et al in [27]. They considered the case of a
bounded domain and the case of 2 = IR". In both cases they proved an existence result
and studied the behaviour of the solution as z — co. For a bounded domain they
showed that

u(z, ) — |§12—| uy dx in L'(2) and v(z,-) — 0 in L?(Q), p < oo.
Q

Furthermore they show the existence of radially symmetric self-similar solutions for
N =2.

6.1.2 Prevention of overcrowding

There are different points of view whether blow-up in chemotaxis is relevant or not. In
fact for the chemotaxis system introduced and derived in the Davis’ case by Othmer and
Stevens for a single particle in [116] blow-up in finite time seems to correspond with the
fact that the particle is trapped respectively localizes in finite time at one particular place
(see also [139] for more comments on that aspect). Thus blow-up really makes sense for
their model. Furthermore, blowing up of the solution only describes a high concentra-
tion of the particle populations in some aggregation centers. (Of course the convergence
of the solution to non-trivial steady state solutions can also describe aggregation, but
they are not the only possibility.) Since the Keller-Segel model only wants to describe
the aggregation phase of chemotactical movement and not the formation of a fruiting
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body the blow-up question is surely worth studying. As J. J. L. Velazquez wrote in [151,

pp. 1-2]:
“Blow-up usually takes place in physical or biological models if they are approximations of more
realistic models, usually containing small parameter (say € > 0), that cannot exhibit singular be-
haviours unless this parameter is set to zero. Suppose that for € = 0 the limit problem can develop
singularities in finite time. The behaviour of the complete model for € > 0 usually is similar to that
of the limit model away from the singularities. However, the features of the problem with ¢ > 0
but small are usually very different from that of the limit problem near the singularities. The pre-
sence of blow-up just indicates that the approximations that lead to the simpler model where blow-
up takes place are not valid anymore near the singularity and that the whole dynamics of the com-
plete model needs to be taken into account here.”

However there are also other models of Keller-Segel type which exclude the possibility
of blow-up solutions directly by introducing some mechanisms, that provide to strong
aggregations or where the chemical production and decay directly is such that blow-up
is impossible. For example in the case of the linear chemotactical sensitivity function
g(u(t,x),v(t,x)) € L*(Q) for all ¢ > 0 with an uniform bound for all # > 0 guarantees
the global existence of the solution of system (30) ( see for example [62]). One model
containing a prevention of an overcrowding of the chemotactical species has been pro-
posed by T. Hillen and K. J. Painter in [57]. They considered system (30) on a C3-differ-
entiable, compact Riemannian manifold M under the assumptions that k(u,v) =1, .
h(u,v) = uP(u)x(v) where 3, x are three times continuous differentiable functions satis-
fying x > 0, 5(0) > 0 and there exists a # > 0 such that 5(@) =0 and S(u) > 0 for
0<wu<u They assumed that the function f(v)=0 and that g(u,v)=
g1(u,v)u — g2(u,v)v is twice continuously differentiable with a bounded death rate
g2 > 6 > 0 and a birthrate g; > 0. In their paper they prove the global existence of the
solution in this case and present numerical simulations for the time evolution of the sys-
tem in one and two space dimensions. They also show the potential pattern variety of
the final steady state patterns for their version of model (30).

6.1.3 Chemotaxis equations with population growth

An extremely large number of models describing chemotactical movement for species in
a reproduction stage can be found in the literature. In general they are based on some
version of the Keller-Segel equations with an additional growth term in the first equa-
tion. For example A. Bonami, D. Hilhorst, E. Logak and M. Mimura consider in [13,
14] the following versions of the classical model:

(36) u, = V(ki@)Vu—uVx»)+f(u), x€Q, t>0
eV, = kcAv — v+ au, xeN, t>0

where k(1) = 1 and f(4) = u(1 — u)(u — a) with a constant 0 < a < 1 (see also [49] for
results related to this system). However also different functional forms for f(u) are
thinkable. For example in [17] one finds the proposed functional form f(u) = au for a
positive constant a >0 and in [29] system (36) is studied with ki(x) =u" and
f(u) =u(l —u?f) with m > 1 and p > 1. Some effects of such growth terms on the var-
ious possible patterns that one can observe during the evolution of the solution will be
mentioned in Section 8.5 of the present paper.
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For some results on a more general chemotaxis growth model we refer the interested
reader to [154]. There X. Wang studied in one space dimension the steady state solu-
tions of the system

u, = V(AVu—xuVeo®»))+ (kf (u) — 60— Bv)v, x€0,1], t>0

37 v o= Av — f(u)v, €[0,1, t>0
(37) ue = xu(p(v)), at x =0, 1,
v:(0) = 0, vy(1) =A(1 —u(1)),

where A, k, 6, h and [ are positive constants and x > 0 for different possible growth
terms f (1) € C*([0, 00)) and chemotactic sensitivity functions ¢(v) € C3([0, c0)) satisfy-
ing /(0) =0, f"(s) > 0 and ¢'(s) > 0 for s € [0,0). He also proves the global existence
and boundedness of the solution for those different growth factors for the population
density.

7 The comparison principles by W. Alt for chemotaxis equations

In his (unfortunately almost unknown) Habilitation [3] from 1980 Wolfgang Alt studies
quasilinear parabolic and elliptic systems including the chemotaxis equations by Keller
and Segel with and without growth terms and for single and many species populations.
I restrict myself to mention only some results from the very nice and interesting work
from 1980 although more general results might hold and are shown in [3]. However I
present W. Alt’s results in an own separated section, since it is a little bit difficult to get
this reference.

The time-dependent Keller-Segel system is included in the class of quasilinear para-
bolic cross-diffusion systems and the steady state problem belongs to the class of quasi-
linear elliptic systems. Important tools in the studies of elliptic and parabolic equations
of second order are comparison and maximum principles to prove qualitative properties
of the solution like boundedness or blow-up phenomena of the solution by constructing
suitable super- and subsolutions for the considered problems. Also for existence results
for elliptic and parabolic problems comparison principles have been used to apply Per-
ron’s method. Wolfgang Alt presents such comparison principles in [3] which also hold
for coupled systems of the following general form:

n

B0 ) = 32 (1,000 o)) = X B 3 b1, 00,00
p=1

ij=1""t

(38) + C(»,u(y), Du(y)) + F(y,u(y))

on a domain A in IRY and for a function ue C*(A,IRM) resp. a distribution
u € D'(A,IRM), where

1. The notations
Dyu(y) = X,(y) - Vu(y) and Du(y) := (Dyu(y), .., Du(y)) € R™

are used for vectorfields X, = (8},...., 8*) € Cy!(A,RM) (u=0,1, ..., m) and
y €A
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2. The a;; are defined as a;;(y) = > a,,(y)6;'(¥)6/(y) with continuous func-

v, pu=1
tions a,,, = @, and (a,,) > 0 on A, and satisfy for all y € A and all £ € R” the
inequality
Y &buan(y) = P
v, p=1

with a on A lower semicontinuous positive function ¢.

The functions b; , are continuous on A.

4. The matrix-functions 4, B; : R® — IRM*™ are continuous and det(4) > 0 and
B, > 0onIRM.

5. F:AxRM - RM and C: A x RM x R™™ — IR are measurable in y € A,
continuous in z € RM and w € IR™" and uniformly bounded on A x K, with a
compact set X ¢ IRM. For example the function C can be given by IR -valued
bilinear forms C,,, like:

o

C(y7 Zv W) . C}L,V[wu7 WV]
1

pv=
withw = (w!,...,w") € R? ™,

Although W. Alt’s results hold for systems in this general setting I restrict myself to
systems appropriate to model chemotaxis and present his results if possible in versions
for those problems. From the applicational point of view one would like to know
whether the considered model remains bounded for all times or not. Thus the existence
of invariant sets for the system is an interesting topic worth studying. Alt presents such
results in his Habilitation. Therefore the first result presented here is the following in-
variance theorem for parabolic systems (see [3, Satz 1.25, page 31 & 32]):

Theorem 19 (Alt) Let p >0 be in C,lo’cl(lRM ) and let M be defined as the set
M :={z e RM | p(z) = 0} # 0. Furthermore let us assume that u is a weak solution of
the parabolic problem

N
u =3 2 (4@&u) + F), nQx (0,7 @QCRY)
j=1
Au) 2 = y(u), on Oy x [0,7]
u(x,0) = up(x), on 9Qp x [0,7],
where OQy and OQ)p denote disjunct subsets of ). For the boundary conditions we assume

that there exists a continuous family of symmetric M x M-matrices A*(z) >0, z € RM
and that there exist vector functions 6; : 0Sly x R — TR such that

¥i(x,z) = A" (2)6;(x, z) and GI-T(x,z) -A*(z) - 0;(x, z) < conmstx
for all z in a compact subset K of R™ and x € 8Q, where 1y = 1 and P = a%z/), for
Jj =1,..., M. Furthermore we suppose that there exists a neighbourhood U of M such that
Vp-9 <0, Vp-F <0 aswell as V*p-A>0 holds on U\ M, if V?p exists.
Thenu(-,0) C M impliesu(-,t) C M forallt € [0, 7].
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However not only the question whether the solution remains in a certain set for all times
if the initial data belongs to this set is an interesting one. As demonstrated in the pre-
vious section the existence of Lyapunov functionals is a helpful tool in the studies of the
time asymptotic as ¢ — co. In [3] W. Alt presents results for the existence of Lyapunov
functionals which are different from the results of Theorem 17 of this paper. To be pre-
cise W. Alt proved the following Corollary:

Corollary 1 (Alt) Assume that the assumptions of Theorem 19 are fulfilled. The
Dini-derivative of the functional

E(f) = / plu(t, x))dx, t € [0,7]
Q
satisfies for all weak solutions which have values in U the inequality

/ Z(—H>V2 )A(u )(%u)af}ur / Vp(u) - F(u)dx + / Vp(u) - ¥(u)dS
Q 90

almost everywhere in [0,7]. If for all z € U\ M either Vp -+ < 0 or Vp-F < 0 holds,
then E is a Lyapunov functional for M, i.e. %E(t) < 0 as long as E(t) > 0. If for all
z€U\ M either Vp-¢ <0 or Vp-F <0 or V*p-A <0 holds, then E is a Lyapunov
functional for M UN, where Ny contains all constants zy € RM, that are zeros of
Vp -1 andVp - F.

Now, let me demonstrate this results by applying Theorem 19 to an example (see [3,
Beispiel 1.41, page 38)):

Consider the weak solution of the taxis-system

u = V(ki(uw)(Vu—ky(u,v)Vv)) +f(u,v), inQx{t>0}

v, = keAv + g(u,v), in Qx{t>0}
(39 0 = Jer (1) 2% — (u, v) on 99 x {t > 0}

g = a on 9§ x {t > 0},

where all coefficient functions are continuous and &, (1), k. > 0, k;(u) = 0 for u > 7.
Furthermore let f'(u,v), (1, v) < 0 for u > % and all v € IR and on every compact
subset of IR? the inequalities

2 2,0 2
. 2 : e € <
h(u, -] ’|auh(”’ )l | 5,80 )" < ki (w)
hold and assume that the initial data (uo, vo) satisfy uy < 7.

We see that this system satisfies the conditions of Theorem 19 with

2
M= {(u,v) e R? | u<a}, p(u,v) = % (max{O,u—ﬁ})

and

Aluy) = <k1 o (ul):z(u, v) ) .
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Now we have to check the conditions for the boundary data 1) = (h,0)”. We set

A* = kl 0
“\0 ket kikd) )
Thus we have ¢ = 4*0 with 6 = (h/k;,0)”. We see that 87 4*0 can be bounded uni-

formly and that the analoguous statements also hold for the partial derivatives 2 5. and
1/) Thus we conclude with Theorem 19 the following:

If the initial data (ug, vo) satisfy uy < %, then the solution of system (39) satisfies u(-,?) < # for
allz > 0.

In contrast to this result for weak solutions the next Theorem [3, Satz 2.40] is a
strong (local) comparison principle for classical solutions of system (38). Before citing
this result we have to introduce “sets of comparison” and “comparison surfaces”.

Definition 3 For i = 1,..,I and a domain V C RM let the functions o; belong to the
class C, ,1001 (V, RM), where ; is piecewise of class C'(V,IRM) and the functions ; belong

to the class C’ e (V IR). Then we define for each y elolc) the sets of comparison
M, ={zeV |2 <s(z), i=1,..,I}
andfori=1,...,1 the g;-boundary
oM, :={z€0M, C V| 0l(z) = ()}
Definition4 Let (V). denote a continuous family of sets V,, C'V C RM, wzth Vas
in the previous definition. Furthermore let there be given functions o € C,oc (V) and
C,loc1 (A) such that for each compact set K C RM and for each relatively compact set
A* C A there exist positive constants ¢ and 6 and a continuous family of projections
my M=V, NKN{s(y) =86 <0< s(»)} = Vyn{e=<(»)}
with
|my(2) — 2| < cle(z) —<(y)| and Veo(z) # 0
forally e N*andz € Mf,. Furthermore let there be a finite number of sets V" with
ko
V= U V:such that o|VF € Clac (V*) and
k=1
m(VENY,) C VF

forall k =1,..,ko and y € A* is satisfied. Then we will call the surfaces V, N {0 =<(»)}
surfaces of comparison.
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Now let us turn to the strong comparison result for the equation
!

(40) By(u(y))Dou(y) = Z ayu(y)DvDyu(y) — ZBI (u(y)) thu )D,u(y
v,u=1 i=1
n fj Copa(3,u())(Dyu() - Dyu(3)) + F(3,u(7))
v,p=1

where we additionally assume that A4,Bi, F and C, , are locally Lipschitz contingous in
u and uniformly continuous in y € A, and that the functions b; , are bounded on A:

Theorem 20 (Alt) Let us assume that (M,) Aisa family of sets of comparison. Ad-
ditionally we assume that for each z €V, for whzch yeMandic{l,.. I} exist such
that z € 0;M,, the following properties are satisfied:

Voi(z) 0, Voiz) € Y, R-Vy(z)

s#i,z€0s My

and the points of discontinuity of V? g; lie on a finite system of smooth surfaces in V, which
intersect the surface {z € V | 0i(z) = <i(2)} in each such z € O;M, transversally. Let us
suppose that for each pair (0;,<;) and the families of sets (V,) ¢, with

Vy={zeV]al) <alz), 1e{l,.I}\ {i}}
there exist continuous functions (; and v; on A x V such that the following three properties
are satisfied on O;M,, y € A:

1. There are continuous functions X', X, ..., X. on V such that for all z € V, with
0i(z) = () andy € A such that

(41) Voi(z) - A(z) = X(2)Voi(z), N(z) >0
42) Voi(z) - Bo(z) = Nj(2)Vi(z), Ny(z) >0
(43)  Vai(2) - Bi(z) = N(2)Vai(z) + pi(2), }( ) €
(44) and pi(z) € [Voi(2)]" cRY,1=1,.

2. LetC(y,z) c R™™ (z € V) denote for every y € A a (uniform iny € A*) locally
Lipschitz continuous, given family of sets. The matrix W(y) € IR™"™ denotes the
positive definite root of the symmetric matrix (a,,(y)) and p; denotes for each

i€{l,..,I} a continuous vector field on V such that p;(z)-Voi(z) =1 for all
z € V. Furthermore let us assume that for all y € A, z € V, with p;(z) = (y) and

w e P(W(y)-C(x,2)) :== (W(y) - C(x,2)) = (W(y) - C(x,2)) - Vei(2))pi(2))
45) N(2) e min: Vi{wi - V20i(2) Wi b+ Zi(ib,,,(y) VVﬂ,l(y)) w;(z) - wi
- Wik (1)Vei(2) - Cun(y, D)W wil 2 Gilx, 2)wl’ = (3, 2)

3. Let S(yo, ) denote the set of all points y € A such that there exists a continuous,
piecewise CH! curve y with ¥(0) = y, and ~(t) € A for all t > 0, which is the inte-
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gral-curve to one of the vector fields — Xy, £X,, ..., £X,,. The generalized Hessian
matrix H}} c(x) of the second derivatives (D,.D,s;) of the function g; is then defined

as follows
Denote for all £ € R™ by ~, the solution curve of the vector field Z &.X,, with
7(0) = y. Then we set #=1

D GEHLS0) = df 6070 b

pv=1

with

dfg(0) := limsup g—(t) —tg(O)
1—0

for a Lipschitz continuous function g on IR.

Then, for all y € A and z € V; with 0;(z) = () the following comparison condi-
tion should hold:

Voi(z) - F(y,2) + u(y,2)

M§

m !
< XN@Dosi(y) = X(9) Y aw(NHs() + Y

pr=1 j=1

+y (au,uxm min, (6 V2 9)(@) + Vo) - G2, )lp(2), pi(2)1> D,s(»Dusi(»)

=1 —
it zey"

Xe(2)bru(¥)Dysi(y)

x~
Il

> (€(2,2)
B u.;l <m 6”"’) D,si(y)Dysi(y)

Here c;( y, z) defines the function

(46) ci(y,z) = Sup { - zm: max (Wku(y))"(y)pr(y)v QI(Z)wk)

weP:(W(y)Cx2) | W &2k s 2k

—

m 1/2
52 W, (»)Ve(z) - (p.u(y,Z)[wk,n(y)]+Cp,u(y,2)[pi(2),w/(])} -

The case {; = 0 and ¢; > 0 is allowed, if Ds; can be chosen identically equal to zero.

Then for every solution u € C*(A,IRM) of (40) with Du(y) € C(y,u(y)) andu(y) € M,
forally € A we have the following statements:
1. Ifthereisaie {1,..,I} anday; € A withu(y;) € OiM,, then u(t) € O;:M, for all
t € S(yi, A).
2. Let JC{l,...,1}, such that for every i€ J there exists a y; €A with
u(y;) € OiM,,, thenu(t) € (YoM, forallt € (\ S(yi, A).

ieJ ieJ

Theorem 20 is very general and technical. However it allows together with a reformula-
tion of Hopf’s maximum principle for systems (see [3, Lemma 3.2, page 63]) to find ad-
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ditional hypotheses under which the solution of certain boundary value problems re-
main in the interior of the sets of comparison. Furthermore it is possible to prove a gen-
eral invariance theorem for parabolic systems. Here we only mention an application of
these theorems to autonomous parabolic Neumann boundary value problems. There-
fore let us once again consider the following problem:

Zax,( 6xl>+F() in Qx (0,7) (Qc RN

A(u)—az = P(u), on 90y x [0, 7]

(V,IRM)and 4 € C.} (v, RMM) with det(4) > 0.

loc

Theorem 21 (Alt) Let g; € Co I(V R), V c R (i = 1,...,I) denote given functions

loc

and let Q C R! be also given. For q € Q the set My is defzned as

where we assume that F, ¢ € !

loc

g={zeV|alz)<q, i=1,..,I}L
Let ¢° € Q be given, such that the initial condition u(0, x) € M P is satisfied for all

x € Q x {t = 0}. Furthermore we assume that there exists a solutzon w € C'([0,7), RY)
of the system of differential inequalities

40> suwp {Vais) F@)}, i=1,.,I, 0< 1< 7
dt z€0; My

such that w;(0) > ¢, i = 1, ..., I and a positive, continuous function (y on [0, 7o), such that
the following conditions are satisfied for
Q:={ge R | 3te0,7] withwi(t) < q; <wi(t) +Co(t) forall i=1,...,1} :

Voi(z) #0 holds for all ze R™ with a g€ Q and z€ 0;M,. Furthermore
Voi(z) € Y. IR-Vy(z) holds on the “edges” of 9M, and o is piecewise C*'. For
s#i,z€0s Mg
allz € oMy withg € Qandi € {1,..,I} we have:
1. Vpi(2)A(z) = \i(2)Voi(z), Mi(z) >0
2. V?0,(2)A(z) > 00n [Vo(2)]", forall k = 1, ..., ko withz € V~.
3. Vei(z) - 4(z) <0.
Thenu(t,x) € M, forall (t,x) € Q x [0, 7).
This Theorem allows us to make statements on the time asymptotic behaviour of some

special cases of the solution of Keller-Segel type models. For example (see also [3, Beis-
piel 5.18, pages 109-111]) let us consider the system

u = V(Hu (Vu — Xu)Vv)) +(B—oau), inQx{r>0}

(47) v, = Ay — v + yu, in Q x {t >0}
W= 0 =2, on 00 x {t > 0},
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where k; > 1 and x, 3, a, 8, -y are positive constants. We definemy = k; — 1 > gand

o) = v= 2 t0g( ) + L (- ).

1X kix
Then
Vo(u,v) = <c kL (1 —m)l) and Vo(u,v) - F(u,v) = L(ﬂ —au)(1 —@) + yu — bv.
1X u kix u
We now set
o1(u,v) = —v, 02(u,v) = o(u,v), 03(,v) = V+é (u —moy —my 10g<mio>)
and

g€ R with q; = —a™, ¢ =a* —ﬁ (molog<aimo> —§+m0) and g3 = a”

for some 0 < a~ < a*. The set of comparison M, is then convex. Now let us addition-
ally assume that

) m
0<y< <1——° )
¥ kix B

holds. Let (u,v) denote the solution of the system (47) and let aj > ymq/§ be minimal
and a; > 0 be maximal such that with ¢° defined analogously as above u(0,x) e M o is
satisfied for all x € Q. If we set

at(t) =aje™ +’7Tm° (1-e?),t>0

and choose a™ as the solution of the ODE

Lo (t) = yu(e) - 0 (1), &~ (0) = a5

where u(#) < 3/« is the uniquely defined by the equation
t
mo log< ol )> +o—u(t) = —kixa" (1)

then we see for the analogously defined ¢(z) that u(z,x) € My for all (7,x) € Qx
[0, 00). The function a*(#) converges as ¢ — co monotone decreasing to a, = ymy/é,
and the function a (f) converges as ¢— oo monotone increasing to a
ay, < B/éa < al, which is the unique solution of the equation

baa” (1) ﬁ 4 kaxmoy
Tog| = ( =& t =0.
mtog(P0) _ (2 )y 2
Thus we see that the set M, with the corresponding ¢, is a global attracting set for all
positive solutions of (47).
Wolfgang Alt’s Habilitation from 1980 contains many results more. However a
complete presentation of his nice results would expand the present work too much.
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Thus this short presentation of some of his results should be enough. I refer the inter-
ested reader to [3] for more results, more applications and more examples of the invar-
iance principles derived by W. Alt.

8 Conclusions and personal comments

There are of course still many open problems in connection with the various approaches
that have been studied for the Keller-Segel model.

This paper dealt solely with the parabolic model proposed by Keller and Segel for
the aggregation phase of mobile species caused by chemotaxis. However there are also
different approaches to chemotaxis and hence also numerous different models describ-
ing chemotaxis. First of all, one must always keep in mind that the model one uses is
based either on a microscopic or a macroscopic approach and always depends on the
species studied. Thus transport and hyperbolic models for chemotaxis have also been
proposed. For example transport and hyperbolic models for chemotactical movement
have been studied in [4, 5, 35, 38, 39, 56, 58, 60] and [114]. The connection between che-
motaxis equations as the parabolic limit of velocity jump processes or transport models
for chemotaxis has been studied in [4, 5, 22, 59, 68, 117] and [118]. I refer to [38] for sur-
veys on different models for chemotactical movement and to [60] for a survey on the hy-
perbolic approach to chemotaxis.

Of course there are many publications presenting experimental data on chemotactic
effects and the influences of changes in the motility or the chemotactic sensitivity of the
given species (see for example [36, 37]). Models which take the chemotactical movement
of n populations according to k sensitivity agents into account have been proposed in
[3, Beispiel 2.47, page 58], [32, 77, 80] and in [156, 157] by G. Wolansky.

Wolansky has studied a generalization of the Keller-Segel model for n populations
in the absence of conflicts. He showed that under certain assumptions a conflict free sys-
tem of » populations admits a Lyapunov functional. Using this functional he investi-
gates the existence of steady state solutions via variational methods. Furthermore, he
investigates time-periodic solutions in a parameter range where a Lyapunov functional
does not exist.

In [32] a chemotaxtis system for two populations in case of a “conflict of interests”
(according to the expressions in [157]) is studied. The system studied in [32] considers
the two populations A and B where population A is attracted by a substance P and re-
pelled by substance Q, while population B behaves the other way around. The popula-
tions are assumed to move chemotactical positive in direction of a higher concentration
of their attractant and chemotactical negative away from higher concentrations of their
repellent. The evolution equation for substance P depends only on population A and P
itself, while the evolution equation for substance Q depends only on population B and
Q itself. Using an appropriate scaling and some mathematical necessary simplifying as-
sumptions, the authors show that the existence of stationary solutions depends on the
solvability of a two-parameter-dependent nonlinear second order boundary value pro-
blem with exponential nonlinearities. Furthermore the authors prove the existence of
nontrivial solutions and characterize the regions for nontrivial solutions in the para-
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meter-space. The presented bifurcation analysis in [32] shows that the total rescaled
mass of the two populations plays the role of a bifurcation parameter for the existence
of nontrivial stationary solutions.

In [77, 80] a model for n-populations is studied that takes competition and chemo-
taxis in a chemostat into account. I refer the interested reader to these two references
for more details on that particular model and the results achieved.

Beside those results for the chemotactical movement of n populations, also the effect
of multiple attractant gradients on chemotactical movement has been studied in [144]
and numerical solutions for the corresponding models have been calculated in [40, 41].
Numerical analysis for the Keller-Segel model has been performed, for example, by Ga-
jewski and Zacharias using a chemotaxis version of the well-established TOSCA code
for solving semiconductor problems and by Nakaguchi and Yagi studying the full dis-
crete approximation of the Keller-Segel model by Galerkin Runge-Kutta methods [104,
105]. The transport chemotaxis model is dealt with in [21] and [41], for example.

The results available for systems related to the Keller-Segel equations such as the
Othmer-Stevens model are so numerous that I mention only a few [81, 116, 145] and
[159]. The well-posedness of the Othmer-Stevens model follows directly from the results
by Rascle [121].

Of course, the functional forms appearing in the original Keller-Segel model can
vary from species to species and some explicit models for the cAMP oscillation have
been proposed (see [84] for the so called Martiel and Goldbeter model, [115] for a survey
on the oscillatory cAMP signaling in Dictyostelium discoideum and [124] for the de-
scription of the role of cAMP in the development of Dictyostelium discoideum). The
Keller-Segel model has also been used to describe different problems. For example, in
[88] the Keller-Segel equations have been proposed for strip pattern formation in alliga-
tor embryos. Angiogenesis has also been proposed as another application of Keller-Se-
gel type models (see for example [27] including references). The large number of applica-
tions and of possible functional forms results directly in a large number of models de-
pending on the considered problem. In some particular papers this has also resulted in
the addition of a third equation to the Keller-Segel model (4) or the rediscovery of a
more complicated version of the Keller-Segel model. This results from attempts to de-
scribe more complicated pattern formations during the aggregation phase of mobile
species such as the attempt to describe spiral waves during the aggregation (see, for ex-
ample, [138, 148] and [149] for such extended models).

At the conclusion of this survey I would ask the reader to allow me a personal com-
ment. The references given in this text are far from complete. I have tried to give the in-
terested reader a brief summary of the latest developments in the Keller-Segel model.
Thus, this article is intended as continuation of Evelyn Fox Keller’s article “Assessing
the Keller-Segel model: How has it fared” of 1980 [76]. It is left to the reader to decide
whether I have succeeded.

Acknowledgement: I thank Prof. Dr. Wolfgang Alt for allowing me to include the results
from his Habilitation in this summary of the Keller-Segel system.

158 JB 105. Band (2003), Heft 3



I D. Horstmann: The Keller-Segel model in chemotaxis and its consequences |

References

[11 J. Adler, Chemotaxis in bacteria. Ann. Rev. Biochem. 44 (1975), pp. 341-356.

[2] N. D. Alikakos, L? bounds of solutions of reaction-diffusion equations Comm. In Partial Dif-
ferential Equations, 4 (1979), pp. 827-868.

[31 W. Alt, Vergleichsiitze fiir quasilineare elliptisch-parabolische Systems partieller Differential-
gleichungen, Habilitation, Ruprecht-Karl-Universitdt Heidelberg, 1980.

[41 W. Alt, Biased Random Walk models for chemotaxis and related diffusion approximations, J.
Math Biol. 9 (1980), pp. 147-177.

[5] W. Alt, Singular perturbation of differential integral equations describing biased random walks.
J. Reine Angew. Math. 322 (1981), pp. 15—41.

[6] H. Amann, Dynamic theory of quasilinear parabolic equations II. Reaction-Diffusion Systems,
Differential and Integral Eqns. 3 (1990), pp. 13-75.

[71 H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value pro-
blems, Function Spaces, Differential Operators and Nonlinear Analysis (Eds. Schmeisser,
Triebel), Teubner Texte zur Mathematik 133 (1993), pp. 9-126.

[8] F. Berezovskaya and G. Karev, Bifurcation of travelling waves in population taxis models.
Physics-Uspekhi, 42 (1999) 917-929.

[9] F. Berezovskaya and G. Karev, Parametric portraits of travelling waves of population models
with polynomial growth and autotaxis rates. Spatial heterogeneity in ecological models (AlcalB
de Henares, 1998). Nonlinear Anal. Real World Appl. 1(2000) 123-136.

[10] F. Berezovskaya and G. Karev, Polynomial models of populations with autotaxis: “traveling
wave” solutions. (Russian). Mat. Model. 12 (2000) 78-93.

[11] P. Biler, Local and global solvability of some parabolic system modelling chemotaxis, Adv.
Math. Sci. Appl. 8 (1998), pp. 715-743.

[12] P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci.
Appl. 9 (1999), pp. 347-359.

[13] A.Bonami, D. Hilhorst, E. Logak, and M. Mimura, 4 free boundary problem arising in a che-
motaxis model, Free boundary problems, theory and applications (Zakopane, 1995), Pitman
Res. Notes Math. Ser. 363, Longman, Harlow (1996), pp. 368-373.

[14] A. Bonami, D. Hilhorst, E. Logak, and M. Mimura, Singular limit of a chemotaxis-growth
model, Adv. Differential Equations 6 (2001), pp. 1173-1218.

[15] J. T. Bonner, The cellular slime molds, Princeton University Press, Princeton, New Jersey, sec-
ond edition, 1967.

[16] A. Boy, Analysis for a system of coupled reaction-diffusion parabolic equations arising in biol-
ogy. Computers Math. Applic 32 (1996), pp. 15-21.

[17] M. P. Brenner, L. S. Levitov and E. O. Budrene, Physical mechanisms for chemotactic pattern
formation by bacteria. Biophys. J. 74 (1998), pp. 1677-1693.

[18] M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Attrac-
tion, Diffusion and Collapse, Nonlinearity 12 (1999), pp. 1071-1098.

[19] M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Blowup
in the Chemotaxis equation, Technical Report University of Chicago.

[20] H. Brézis and F. Merle, Uniform estimates and blow-up behaviour for solutions of
—Au = V(x)e" in two dimensions, Comm. P.D.E. 16 (1991), pp. 1223-1253.

[21] B.J. Brosilow, R. M. Ford, S. Sarman and P. T. Cummings, Numerical solution of transport
equations for bacterial chemotaxis: Effect of discretization of directional motion, SIAM J.
Appl. Math. 56 (1996), pp.1639-1663.

[22] F. A. C. C. Chalub, P. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemo-
taxis and their drift diffusion limit. Preprint 2002.

[23] S.-Y.A. Chang and P. Yang, Conformal deformation of metrics on S?, J. Differential Geome-
try, 27 (1988), pp. 259-296

[24] S. Childress and J.K. Percus, Nonlinear aspects of chemotaxis, Math. Biosc. 56 (1981), pp.
217-237.

JB 105. Band (2003), Heft 3 159



{ Ubersichtsartikel Historischer Artikel Buchbesprechungen

[25] S. Childress, Chemotactic collapse in two dimensions, Lecture Notes in Biomathematics,\
Springer-Verlag, volume 55, 1984, pp. 61-66.

[26] M. H. Cohen and A. Robertson, Wave propagation in the early stages of aggregation of cellu-
lar slime molds. J. theor. Biol. 31 (1971), 101-118.

[27] L. Corrias, B. Perthame and H. Zaag, 4 model motivated by angiogenesis, C. R. Acad. Sci.
Paris, Ser. I 336 (2003), pp. 141-146.

[28] B. Davis, Reinforced random walks, Probab. theory Related Fields 84 (1990), pp. 203—229.

[29] F. Dkhil, On the analysis of reaction-diffusion-advection systems arising in chemical and bio-
mathematical models, PhD-thesis, University of Cergy-Pontoise, France, 2002.

[30] Y. Ebihara, Y. Furusho and T. Nagai, Singular solutions of traveling waves in a chemotactic
model., Bull. Kyushu Inst. Tech. Math. Natur. Sci. 39 (1992) 29-38.

[31] Evans, L. C. 1998 Partial Differential Equations, American Mathematical Society, Graduate
Studies in Mathematics 19, Providence, Rhode Island.

[32] A.Fasano, A. Mancini and M. Primicerio, Equilibrium of two populations subjected to chemo-
taxis, Preprint 2002.

[33] D.L. Feltham and M. A. J. Chaplain, Travelling waves in a model of species migration, Appl.
Math. Lett. 13 (2000), pp. 67-73.

[34] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to tra-
veling front solutions, Arch. Rat. Mech. Analysis 65 (1977), pp. 335-362.

[35] R. M. Ford and D. A. Lauffenburger, Analysis of chemotactic bacterial distributions in popula-
tion migration assays using mathematical model applicable to steep or shallow attractant gradi-
ents, Bull. Math. Biol. 53 (1991), pp. 721-749.

[36] R. M. Ford, B. R. Phillips, J. A. Quinn and D. A. Lauffenburger, Measurement of bacterial
random motility and chemotaxis coefficients: 1. Stopped-flow diffusion chamber assay, Biotech.
and Bioengin. 37 (1991), pp. 647-660.

[37] R. M. Ford and D. A. Lauffenburger, Measurement of bacterial random motility and chemo-
taxis coefficients: II. Application of Single-cell-based mathematical model, Biotech. and Bioen-
gin. 37 (1991), pp. 661-672.

[38] R. M. Ford, Mathematical modeling and quantitative characterization of bacterial motility and
chemotaxis., Modelin the Metabolic and Physiology Activities of Microorganisms: Chapter 7,
John Wiley & sons, Inc. 1992.

[39] R. M. Ford and P. T. Cummings, On the relationship between cell balance equations for chemo-
tactic cell populations, SIAM J. Appl. Math. 52 (1992), pp. 1426-1441.

[40] P. D. Frymier, R. M. Ford and P. T. Cummings, Cellular dynamics simulations of bacterial
chemotaxis, Chem. Engin. Sci. 48 (1993), pp. 687-699.

[41] P.D. Frymier, R. M. Ford and P. T. Cummings, Analysis of bacterial migration: I. Numerical
solution of balance equation, AIChE J. 40 (1994), pp. 704-715.

[42] M. Funaki, M. Mimura and T. Tsujikawa, Traveling front solutions arising in a chemotaxis-
growth model, RIMS Kokyuroku 1135 (2000), pp. 52-76.

[43] H. Gajewski, W. Jager and A. Koshelev, About loss of regularity and “blow up” of solutions for
quasilinear parabolic systems, Preprint No. 70, Weierstra-Institut fiir Angewandte Analysis
und Stochastik, Berlin (1993).

[44] H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling che-
motaxis, Math. Nachr. 195 (1998), pp. 77-114.

[45] H. Gajewski and K. Zacharias, On a reaction-diffusion system modelling chemotaxis, Proceed-
ings of the Equadiff 99, (eds. B. Fiedler, K. Groger, J. Sprekels), World Scientific Publishing
Co, Singapore, 2000, pp. 1098-1103.

[46] J. Grolle (verantwortlicher Redakteur fiir Biologie), Wabernder Klecks, DER SPIEGEL 36
(1998), p. 212.

[47] C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singulary perturbed
Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), pp. 47-82.

[48] G. Harada, T. Nagai, T. Senba and T. Suzuki, Concentration lemma, Brezis-Merle type in-
equality, and a parabolic system of chemotaxis, Adv. Differential Equations 6 (2001), pp.
1255-1280.

160 JB 105. Band (2003), Heft 3



] D. Horstmann: The Keller-Segel model in chemotaxis and its consequences |

[49] M. Henry, D. Hilhorst and R. Schétzle, Convergence to a viscosity solution for an advection-re-
action-diffusion equation arising from a chemotaxis-growth model. Hiroshima Math. J. 29
(1999), pp. 591-630.

[50] M. A. Herrero and J. J. L. Velazquez, Singularity patterns in a chemotaxis model, Math. Ann.
36 (1996), pp. 583-623.

[51] M. A. Herrero and J. J. L. Velazquez, Chemotactic collapse for the Keller-Segel model, J.
Math. Biol. 35 (1996), pp. 583-623.

[52] M. A. Herrero and J. J. L. Velazquez, 4 blow-up mechanism for a chemotaxis model, Ann.
Scuola Normale Superiore 24 (1997), pp. 633-683.

[53] M. A. Herrero, E. Medina and J. J. L. Velazquez, Finite-time aggregation into a single point in
a reaction diffusion system, Nonlinearity 10 (1997), pp. 1739-1754.

[54] M. A. Herrero, E. Medina and J. J. L. Velazquez, Self-similar blow-up for a reaction diffusion
system, Journal of Computational and Applied Mathematics 97 (1998), pp. 99-119.

[55] M. A. Herrero, Asymptotic properties of reaction-diffusion systems modelling chemotaxis, Ap-
plied and industrial mathematics, Venice-2, 1998, Kluwer Acad. Publ., Dordrecht 2000, pp.
89-108.

[56] T. Hillen and A. Stevens, Hyperbolic models for chemotaxis in 1-D, Nonlinear Anal., Real
World Appl. 1 (2000), pp. 409-433.

[57] T. Hillen and K. J. Painter, Global Existence far a Parabolic Chemotaxis Model with Preven-
tion of Overcrowding, Adv. in Appl. Math. 26 (2001), pp. 280-301.

[58] T.Hillen, C. Rohde and F. Lutscher Existence of weak solutions for a hyperbolic model of che-
mosensitive movement, J. Math. Anal. Appl. 260 (2001), pp. 173—-199.

[59] T. Hillen and H. G. Othmer, The diffusion limit of transport equations derived from velocity-
Jump processes, SIAM J. Appl. Math. 61 (2000), pp. 751-775.

[60] T. Hillen, Hyperbolic models for chemosensitive movement, Math. Models Methods Appl. Sci.
12 (2002), pp. 1-28.

[61] D. Horstmann, Some blowup results for the Keller-Segel model, Proceedings of the Equadiff
99, (eds. B. Fiedler, K. Groger, J. Sprekels), World Scientific Publishing Co, Singapore 2000,
pp- 1104-1106.

[62] D. Horstmann, Lyapunov functions and LP-estimates for a class of reaction-diffusion systems,
Colloquium Mathematicum 87 (2001), pp. 113-127.

[63] D.Horstmann, The nonsymmetric case of the Keller-Segel model in chemotaxis: some recent re-
sults, Nonlinear Differential Equations and Applications (NoDEA) 8 (2001), pp. 399-423.

[64] D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions,
European Journal of Applied Mathematics 12 (2001), pp. 159-177.

[65] D. Horstmann, On the existence of radially symmetric blow-up solutions for the Keller-Segel
model, Journal of Mathematical Biology 44 (2002), pp. 463—478.

[66] D. Horstmann and A. Stevens, 4 constructive approach to traveling waves in chemotaxis, Pre-
print no.78: 2001 Max-Planck-Institute for Mathematics in the Sciences, Leipzig, submitted.

[67] D. Horstmann, On some pattern forming effects in chemotaxis, to appear in the Proceedings of
the 5th European Conference of the European Society for Mathematical and Theoretical
Biology (ECMTB 2002).

[67a]D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its conse-
quences II. Jahresber. Dtsch. Math.-Ver. (to appear).

[68] H.J. Hwang, K. Kang and A. Stevens, Drift-diffsion limits of kinetic models for chemotaxis: a
generalization Preprint no.19: 2003 Max-Planck-Institute for Mathematics in the Sciences,
Leipzig, submitted.

[69] W. Jager and S. Luckhaus, On explosions of solutions to a system of partial differential equa-
tions modelling chemotaxis, Trans. Am. Math. Soc. 329 (1992), pp. 817-824.

[70] Y. Kabeya and W.-M. Ni, Stationary Keller-Segel model with the linear sensitivity, RIMS Ko-
kyuroku 1025 (1998), pp. 44—65.

[71] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J.
Theor. Biol. 26 (1970), pp. 399-415.

[72] E.F.Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol. 30 (1971), pp. 225-234.

JB 105. Band (2003), Heft 3 161



] Ubersichtsartikel | Historischer Artikel Buchbesprechungen

[73]1 E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A Theoretical Analysis,
J. theor. Biol. 30 (1971), pp. 235-248.

[74] E.F.Keller and G. M. Odell, Necessary and sufficient conditions for chemotactic bands Math.
Biosci. 27 (1975), pp. 309-317.

[75] E.F.Keller and G. M. Odell, Traveling bands of chemotactic bacteria revisited, J. Theor. Biol.
56 (1976), pp. 243 -247.

[76] E. F. Keller, Assessing the Keller-Segel modell: How has it fared?, Editors W. Jiger, H. Rost
und P. Tautu, Lecture Notes in Biomathematics 38, Springer-Verlag, Berlin, Heidelberg, New
York 1980, pp. 379-387.

[77] H. J. Kuiper, 4 priori bounds and global existence for a strongly coupled quasilinear parabolic
system modeling chemotaxis, Electron. J. Differ. Equ. 2001 (2001), pp. 118, electronic only.

[78] O. A. Ladyzenskaya and N. N. Ural’ceva, Linear and quasilinear elliptic equations, Academic
Press, New York and London, 1968.

[79] D. Lauffenburger, C. R. Kennedy and R. Aris Traveling bands of chemotactic bacteria in the
context of population growth, Bull. of Math. Biol. 46 (1984), pp. 19—-40.

[80] D. Le and H. L. Smith, Steady states of models of microbial growth and competition with che-
motaxis, J. M. A. A. 229 (1999), pp. 295-318.

[81] H. Levine and B. Sleeman A system of reaction diffusion equations arising in the theory of rein-
forced random walks, SIAM J. Appl. Math 57 (1997), pp. 683—730.

[82] Y. Li and I. Shafrir, Blow-up analysis for solutions of —Au = Ve* in dimension two, Ind. Univ.
Math. J. 43 (1994), pp. 1255-1270.

[83] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis sys-
tem, J. Differ. Equations, 72 (1988), pp. 1-27.

[84] J.-L. Martiel and A. Goldbeter, A4 model based on receptor desensitization for cyclic AMP sig-
naling in Dictyostelium cells, Biophys. J. 52 (1987), pp. 807 -828.

[85] Y. Mizutani and T. Nagai, Self-similar radial solutions to a system of partial differential equa-
tions modelling chemotaxis. Bull. Kyushu Inst. Tech. Math. Natur. Sci. 42 (1995), pp. 19-28.

[86] Y. Mizutani, N. Muramoto and K. Yoshida, Self-similar radial solutions to a parabolic system
modelling chemotaxis via variational method, Hiroshima Math. J. 29 (1999), pp. 145-160.

[87] N. Muramoto, Y. Naito and K. Yoshida, Existence of self-similar solutions to a parabolic sys-
tem modeling chemotaxis, Jpn. J. Ind. Appl. Math. 17 (2000), pp. 427-451.

[88] J. D. Murray, Modelling the pattern generating mechanism in the formation of stripes on alliga-
tors, Mathematical physics, 9th Int. Congr. Swansea/UK 1988 (1989), pp. 208-213.

[89] J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed., Series: Interdisciplinary Ap-
plied Mathematics. Volume. 17, Springer Verlag, Heidelberg, New York, 2002.

[90] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed.,
Series: Interdisciplinary Applied Mathematics. Volume. 18, Springer Verlag, Heidelberg,
New York, 2003.

[91] T. Nagai and T. Ikeda, Traveling waves in a chemotactic model, J. Math. Biol. 30 (1991),
pp. 169-184.

[92] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci.
Appl. 5(1995), pp. 581-601.

[93] T. Nagai and T. Senba, Behavior of radially symmetric solutions of a system related to chemo-
taxis, Nonlinear Anal., Theory Methods Appl. 30 (1997), pp. 3837-3842.

[94] T. Nagai, T. Senba and K. Yoshida, Application of the Moser-Trudinger inequality to a para-
bolic system of chemotaxis, Funkc. Ekvacioj, Ser.Int. 40 (1997), pp. 411-433.

[95] T. Nagai, T. Senba and K. Yoshida, Global existence of solutions to the parabolic systems of
chemotaxis, RIMS Kokyuroku 1009 (1997), pp. 22-28.

[96] T.Nagai, T. Senba and T. Suzuki, Concentration behavior of blow-up solutions for a simplified
system of chemotaxis, Preprint 1998.

[97] T. Nagai, T. Senba and T. Suzuki, Keller-Segel system and the concentration lemma, RIMS
Kokyuroku 1025 (1998), pp. 75-80.

[98] T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic
system of chemotaxis, Adv. Math. Sci. Appl. 8 (1998), pp. 145-156.

162 JB 105. Band (2003), Heft 3



D. Horstmann: The Keller-Segel model in chemotaxis and its consequences | W

[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]

[111]

[112]

[113]
[114]
[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]

[124]

T. Nagai, Behavior of solutions to a parabolic-elliptic system modelling chemotaxis, J. Korean
Math. Soc. 37 (2000), pp. 721-733.

T. Nagai, T. Senba and T. Suzuki, Chemotaxis collapse in a parabolic system of mathematical
biology, Hiroshima Math. J. 30 (2000), pp. 463—-497.

T. Nagai, Global existence and Blowup of solutions to a chemotaxis system, Nonlinear Analy-
sis 47 (2001), pp. 777-787.

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in
two-dimensional domains, J. Inequal. Appl. 6 (2001), pp. 37-55.

Y. Naito, T. Suzuki and K. Yoshida, Self-similar solutions to a parabolic system modeling
chemotaxis, J. Differential Equations 184 (2002), pp. 386-421.

E. Nakaguchi and A. Yagi, Full discrete approximation by Galerkin Runge-Kutta methods for
a parabolic system of chemotaxis, Hokkaido Mathematical Journal 31 (2002), pp. 385—429.
E. Nakaguchi and A. Yagi, Full discrete approximations by Galerkin method for chemotaxis-
growth model, Nonlinear Anal. Theory Meth. Appl. 47 (2001), pp. 6097—-6107.

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol. 42
(1973), pp. 63-105.

V. Nanjundiah and S. Shweta, The determination of spatial pattern in Dictyostelium discoi-
deum, J. Biosci. 17 (1992), pp. 353-394.

W.-M. Ni and . Takagi, On the shape of least-energy solutions to a semilinear Neumann pro-
blem, Comm. Pure Appl. Math. 44 (1991), pp. 819-851.

W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann
problem, Duke Math. J. 70 (1993), pp. 247-281.

A. Novick-Cohen and L. A. Segel, A gradually slowing traveling band of chemotactic bacter-
ia. J. Math. Biol. 19 (1984), pp. 125-132.

G. M. Odell, Travelling bands of chemotactic microorganisms, Chapter 6 of: Mathematical
models in molecular and cellular biology, ed. L.A. Segel, Cambridge University Press, Cam-
bridge (1980), p. 345.

K. Oelschlager, On the derivation of reaction-diffusion equations as limit dynamics of systems
of moderately interacting stochastic many particle processes. Probab. Th. Rel. Fields 82
(1989), pp. 565-586.

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equa-
tions. Funkcialaj Ekvacioj 44 (2001), pp. 441-469.

H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems. J. Math.
Biol. 26 (1988), pp. 263-298.

H. G. Othmer and P. Schaap, Oscillatory cAMP Signaling in the development of Dictyoste-
lium discoideum, Comments on Theoretical Biology 5 (1998), pp. 175-282.

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: the ABCs of taxis in rein-
forced random walks. STAM J. Appl. Math. 57 (1997), pp. 1044—1081.

H. G. Othmer and T. Hillen, The diffusion limit of transport equations. II: Chemotaxis equa-
tions, SIAM J. Appl. Math. 62 (2002), pp. 1222-1250.

C. S. Patlak, Random walk with persistence and external bias. Bull. Math: Biophys. 15 (1953),
pp. 311-338.

K. Post, 4 non-linear parabolic system modeling chemotaxis with sensitivity functions, Disser-
tation, Humboldt-Universitit zu Berlin, Institut fiir Mathematik 1999.

L. M. Prescott, J. P. Harley and D. A. Klein, Microbiology. Wm. C. Brown Publishers, 3rd
edition: Chicago, London, 1996.

M. Rascle Sur une équation intégro-differentielle non linéaire issue de la biologie J. Diff. Eqns
32(1979), pp. 420-453.

M. Rascle and C. Ziti, Finite time blow-up in some models of chemotaxis, J. Math. Biol. 33
(1995), pp. 388-414.

X. Ren, Least-energy solutions to a non-autonomous semilinear problem with small diffusion
coefficient Electric J. Diff. Eqns 1993 (1993), pp. 1 -21.

C. D. Reymond, P. Schaap, M. Véron and J. G. Williams, Dual role of cAMP during Dic-
tyostelium development, Experientia 368 (1995), pp. 1166-1174.

JB 105. Band (2003), Heft 3 163



Ubersichtsartikel | Historischer Artikel ‘ Buchbesprechungen

[125]
[126]
[127]
[128]
[129]
[130]
[131]

[132]

[133]

[134]
[135]
[136]
[137]
[138]
[139]

[140]
[141]

[142]
[143]
[144]
[145]
[146]
[147]

[148]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima
Math. J. 30 (2000), pp. 257-270.

G. Rosen, On the propagation theory for bands of chemotactic bacteria, Math. Biosci. 20
(1974), pp. 185-189.

G. Rosen and S. Baloga, On the stability of steady propagating bands of chemotactic bacteria,
Math. Biosci. 24 (1975), pp. 273-279.

R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Am. Math. Soc. 292 (1985),
pp- 531-556.

T. L. Scribner, L. A. Segel and E. H. Rogers, 4 numerical study of the formation and propaga-
tion of traveling bands of chemotactic bacteria, J. Theor. Biol. 46 (1974), pp. 189-219.

T. Senba, Blow-up of radially symmetric solutions to some systems of partial differential equa-
tions modelling chemotaxis, Adv. Math. Sci. Appl. 7 (1997), pp. 79-92.

T. Senba and T. Suzuki, Chemotaxis Collapse in a parabolic-elliptic system of mathematical
biology, Preprint 1999.

T. Senba, Behavior of solutions to a system related to chemotaxis, Proceedings of the Equadiff
99, (eds. B. Fiedler, K. Groger, J. Sprekels), World Scientific Publishing Co, Singapore
2000, pp. 1115-1120.

T. Senba and T. Suzuki, Some structures of stationary solutions to Keller-Segel model, N.
Kenmochi (ed.), Proceedings of the international conference on free boundary problems:
theory and applications, Chiba, Japan, November 7—13, 1999. I. Tokyo: Gakkotosho. GA-
KUTO Int. Ser., Math. Sci. Appl. 13 (2000), pp. 282-297.

T. Senba and T. Suzuki, Some structures of the solution set for a stationary system of chemo-
taxis, Adv. Math. Sci. Appl. 10 (2000), pp. 191-224.

T. Senba and T. Suzuki, Local and norm behavior of blowup solutions to a parabolic system of
chemotaxis, J. Korean Math. Soc. 37 (2000), pp. 929-941.

T. Senba and T. Suzuki, Behavior of solutions to a system related to chemotaxis, Nonlinear
Analysis 47 (2001),pp. 2551-2562.

T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis, J. Funct.
Anal. 191 (2002), pp. 17-51.

J. A. Sherratt, Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel model equa-
tions as an approximation to a detailed model, Bulletin Math. Biol. 56 (1994), pp. 129-146.

A. Stevens, Trail following and aggregation of myxobacteria., J. Biol. Systems 3 (1995), pp.
1059-1068.

A. Stevens, Simulation of chemotaxis-equations in two space dimensions., Nonlinear Physics
of complex systems - current status and future trends, J. Parisi, S. C. Miiller and W. Zimmer-
mann (eds), Springer, Berlin 1996.

A. Stevens and F. Schweitzer, Aggregartion induced by diffusing and nondiffusing media. in
Dynamics of Cell and Tissue Motion, W. Alt, A. Deutsch and G. Dunn, eds. Birkhduser,
Basel, Switzerland, 1997, pp. 183-192.

A. Stevens, A Stochastic cellular automaton modeling gliding and aggregation of myxobacter-
ia. SIAM J. Appl. Math. (electronic) 61 (2000), pp. 172-182.

A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting
stochastic many-particle systems., SIAM J. Appl. Math. (electronic) 61 (2000), pp. 183-212.
I. Strauss, P. D. Frymier, R. M. Ford and P. T. Cummings, Analysis of bacterial migration:
II. Studies with multiple attractant gradients, AIChE J. 41 (1995), pp. 402-414.

B. D. Sleeman and H. A. Levine, Partial differential equations of chemotaxis and angiogen-
esis, Math. Methods Appl. Sci. 24 (2002), pp. 405-426.

M. Struwe, Variational Methods, Springer Verlag Berlin, Heidelberg, New York, second edi-
tion 1996.

M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Bolle-
tino U. M. I. 8 (1998), pp. 109-121.

0. O. Vasieva, B. N. Vasiev, V. A. Karpov and A. N. Zaikin, 4 model of Dictyostelium dis-
coideum aggregation, J. theor. Biol. 171 (1994), pp. 361-367.

164

JB 105. Band (2003), Heft 3



[

D. Horstmann: The Keller-Segel model in chemotaxis and its consequences |

[149]
[150]

[151]

[152]

[153]
[154]
[155]
[156]
[157]
[158]
[159]

B. N. Vasiev, P. Hogeweg and A. V. Panfilov, Simulation of Dictyostelium discoideum aggre-
gation via reaction-diffusion model, Physical Review Letters 73 (1994), pp. 3173-3176.

J. J. L. Velazquez, Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl.
Math. 62 (2002), pp. 1581-1633 (electronic).

J.J. L. Velazquez, Point dynamics in a singular limit of the Keller-Segel model Preprint of the
DEPARTAMENTO DE MATEMATICA APLICADA, Universidad Complutense de Ma-
drid 2002.

J. J. L. Velazquez, Well posedness of a model of point dynamics in a limit of the Keller-Segel
model Preprint of the DEPARTAMENTO DE MATEMATICA APLICADA, Universidad
Complutense de Madrid 2002.

G. Wang and J. Wei, Steady state solutions of a reaction-diffusion system modeling chemo-
taxis, Math. Nachr. 233/234 (2002), pp. 221-236.

X. Wang, Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility
and chemotaxis and dynamics, SIAM J. Math. Anal. (electronic) 31 (2000), pp. 535-560.

G. Wolansky, A4 critical parabolic estimate and application to nonlocal equations arising in
chemotaxis, Appl. Anal. 66 (1997), pp. 291-321.

G. Wolansky, Scent and Sensitivity: Equilibria and stability of chemotactic systems in the ab-
sence of conflicts, Preprint 1998.

G. Wolansky, Multi-components chemotactic system in absence of conflicts, Euro. Jnl. of Ap-
plied Mathematics 13 (2002), pp. 641-661.

A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis, Math. Japonica 45
(1997), pp. 241-265.

Y. Yang, H. Chen and W. Liu, On existence of global solutions and blow-up to a system of re-
action-diffusion equations modelling chemotaxis, SIAM J. Math. Anal. 33 (2001), pp. 763—
785.

JB 105. Band (2003), Heft 3 165



Mathematik erobert
das Management

Irich Hirsch
unter Dueck (Hrsg,) &

Management by
Mathematics

| Ertahrangen o

Ulrich Hirsch, Gunter Dueck (Hrsg.)
Management by
Mathematics

Erfahrungen und Erfolge von
Executives und Politikern

2003. ca. 210 S. Geb. EUR 34,90
ISBN 3-528-03187-5

Mathematik steckt in nahezu jedem Produkt und spielt eine
fundamentale Rolle in sehr vielen Dienstleistungen (u.a. Finanzen,
Logistik). Die Herausgeber, Prof. Gunter Dueck, Chief Technologist
von IBM, und Prof. Ulrich Hirsch, Chef von Ulrich Hirsch & Partner
Unternehmensberater, gehen nun einen Schritt weiter. lhnen ist es
gelungen, mehr als zwanzig Mathematikerinnen und Mathematiker
in herausragenden Fiihrungspositionen, sowohl in der Wirtschaft,
als auch in der Politik, zu Beitragen zu gewinnen. In diesen Beitri-
gen wird - fiir viele "klassische" Manager sicherlich {iberraschend -
sehr anschaulich verdeutlicht, dass Mathematik auch in vielen
Managemententscheidungen steckt. Wenigstens in solchen, die gut
getroffen sind!

Abraham-Lincoln-StraBe 46
D-65189 Wiesbaden

Fax 0611.78 78-420
www.vieweg.de



DE GRUYTER SERIES 1N NOKLINEAR
ANALYSIS AND APPLICATIONS 8

JORGE 12
ALFONSO VIGNOLI

Equivariant
Degree

Theory

This book presents a
new degree theory for

maps which com-

prgs

single integer but an clement of the group of equivariant

mute with a group of

symmetries. This de-

gree is no longer a

homotopy classes of maps between two spheres and

depends on the orbit types of the spaces.

The authors develop the theory and applications of this
degree in a self-contained presentation starting with only
elementary facts. The first chapter explains the basic tools
of representation theory, homotopy theory and differential

equations needed in the text. Then the degree is defined

Carlo Bardaro, Julian Musielak, Gianluca Vinti
M Nonlinear Integral Operators and

Applications

2003. xi, 201 pages. Cloth.
€ 88,— [D] * ISBN 3-11-017551-7

(de Gruyter Series in Nonlincar Analysis and Applications 9)

In 1903 Fredholm published his famous paper on integral
equations. Since then lincar integral operators have
become an important tool in many areas, including the
theory of Fourier series and Fourier integrals, approxima-
tion theory and summability theory, and the theory of
integral and differential equations. As regards the latter,
applications were soon extended beyond linear operators.
In approximation theory, however, applications were lim-
ited to linear operators mainly by the fact that the notion
of singularity of an integral operator was closely connect-
ed with is linearity.

This book represents the first attempt at a comprehensive
treatment of approximation theory by means of nonlinear
integral operators in function spaces. In particular, the

fundamental notions of approximate identity for kernels

W

E de Gruyter

Berlin - New York

www.deGruyter.de -

Jorge Ize / Alfonso Vignoli
M Equivariant Degree Theory
2003. xix, 361 pages. Cloth.

€98,— (D] * ISBN 3-11-017550-9
(de Gruyter Series in Nonlinear Analysis and Applications 8)

and its main abstract properties are derived. The next part
is devoted to the study of equivariant homotopy groups of
spheres and to the classification of equivariant maps in the
case of abelian actions. These groups are explicitely com-
puted and the effects of symmetry breaking, products and
composition are thorougly studied. The last part deals
with computations of the equivariant index of an isolated
orbit and of an isolated loop of stationary points. Here dif-
ferential equations in a variety of situations are considered:
symmetry breaking, forcing, period doubling, twisted
orbits, first integrals, gradients etc. Periodic solutions of
Hamiltonian systems, in particular spring-pendulum sys-
tems, are studied as well as Hopf bifurcation for all these

situations.

SERIES 1h NO
AN

Nonlinear Integral
Operators and
Applications

g

tent approximation results. Applications to nonlinear sum-

of nonlinear operators
and a general concept

of modulus of continu-

ity are developed in

order to obrtain consis-

mability, nonlinear integral equations and nonlinear sam-
pling theory are given. In particular, the study of nonlin-
car sampling operators is important since the results per-
mit the reconstruction of several classes of signals.

In a wider context, the material of this book represents a
starting point for new areas of research in nonlinear analy-
sis. For this reason the text is written in a style accessible

not only to rescarchers but to advanced students as well.

Please order at your book-
seller or directly from us
Prices are subject to change.

Newsletter: www.deGruyter.de/Newsletter

WALTER DE GRUYTER GMBH & CO. KG - Genthiner Strafe 13 - 10785 Berlin

Telefon +49-(0)30-2 60 05-0 -

Fax +49-(0)30-2 60 05-251 -

E-Mail wdg-info@deGruyter.de

o
"
(9]
=
c

<
"
=2
2
)
=5
=
2
S
s
]
=
@




Prazise und verstandlich:

§ Joachim Weidmann
. Lineare Operatoren
in Hilbertraumen
Teil It Anwendungen

Joachim Weidmann
Lineare Operatoren in
Hilbertraumen

Teil Il: Anwendungen

2003. 404 S.

Gunther Trautmann,
Gottfried Kéthe)

Br. € 39,90

ISBN 3-519-02237-0

!

(Mathematische Leitfaden,
hrsg. v. Klaus D. Bierstedt,

Teubner

Inhalt

Spektrale Teilraume eines selbstadjun-
gierten Operators - Sturm-Liouville-Ope-
ratoren - Eindimensionale Diracope-
ratoren - Periodische Differentialopera-
toren - Ein-Teilchen-Schrédingeropera-
toren - Separation der Variablen und
Kugelflachenfunktionen - Spektraltheo-
rie von N-Teilchen-Schrédingeropera-
toren - Grundbegriffe der Streutheorie -
Existenz der Wellenoperatoren - Ein ein-
dimensionales Streuproblem

Das Buch

Die im ersten Teil des Buchs dargestell-
ten Grundlagen der Theorie der linea-
ren Operatoren in Hilbertraumen wer-
den hier benutzt, um die Spektralthe-
orie von Ein- und Mehrteilchen-Schro-
dingeroperatoren sowie des Dirac-
Operators eingehend zu untersuchen.
Eine einfache Darstellung der Metho-
de der Separation der Variablen und
der Kugelfunktion erlaubt es, viele
Operatoren durch Separation der Vari-
ablen auf einfache zurtickzufuhren
und damit sehr detaillierte Resultate
Uber deren Spektren zu erzielen. Die
Grundlagen der "einfachen" Streuthe-
orie, sowie deren wichtigste Resultate
der letzten Jahrzehnte werden aus-
fuhrlich dargestellt; abschlieBend wer-
den die Grundprinzipien der Mehr-
Kanal-Streuung entwickelt.

Abraham-Lincoln-Str. 46
65189 Wiesbaden

Fax 0611.7878-420
www.teubner.de




Grundlehren der mathematischen Wissenschaften

JEAN JACOD

LIMIT THEOREMS FOR
STOCHASTIC PROCESSES

i

PERFECT LATTICES IN
EUCLIDEAN SPACES

GW

MARIUS VAN DER PUT
-:u R sinGaR

p——— GALOIS THEORY OF
" LINEAR DIFFERENTIAL
BQUATIONS.

Please order from

Springer - Customer Service - Haberstr. 7 - 69126 Heidelberg, Germany
Tel.: +49(0)6221-345-0 - Fax: +49(0)6221-345-4229

e-mail: orders@springer.de

or through your bookseller

All Euro and GBP prices are net-prices subject to local VAT, e.g. in Germany 7% VAT for books and 16% VAT
for electronic products. Prices and other details are subject to change without notice. d&p - 009510x

J.Jacod, A. N. Shiryaev
Limit Theorems for Stochastic Processes

The authors, two of the international leaders in the field, propose a systematic
exposition of convergence in law for stochastic processes, from the point of view of
semimartingale theory, with emphasis on results that are useful for mathematical
theory and mathematical statistics. This leads them to develop in detail some par-
ticularly useful parts of the general theory of stochastic processes, such as martin-
gale problems, and absolute continuity or contiguity results. The book contains an
introduction to the theory of martingales and semimartingales, random measures
stochastic integrales, Skorokhod topology, etc., as well as a large number of results
which have never appeared in book form, and some entirely new results.

2nd ed. 2003. XX, 661pp. (Grundlehren der mathematischen Wissenschaften, Volume 288)
Hardcover € 119,95; sFr 194,00; £ 84,00 [SBN 3-540-43932-3

J. Martinet

Perfect Lattices in Euclidean Spaces

This book discusses a beautiful and central problem in mathematics, which
involves geometry, number theory, coding theory and group theory, centering on
the study of extreme lattices, i.e. those on which the density attains a local maxi-
mum, and on the so-called perfection property.

Written by a leader in the field, it is closely related to, though disjoint in content
from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices
and Groups, published in the same series as vol. 290

2003. XVIII, 523 p. (Grundlehren der mathematischen Wissenschaften, Volume 327)
Hardcover € 89,95; sFr 149,50; £ 63,00 ISBN 3-540-44236-7

M. Van der Put, M. F. Singer
Galois Theory of Linear Differential Equations

Linear differential equations form the central topic of this volume, Galois theory
being the unifying theme. A large number of aspects are presented: algebraic theo-
ry especially differential Galois theory, formal theory, classification, algorithms to
decide solvability in finite terms, monodromy and Hilbert’s 21st problem, asymp-
totics and summability, the inverse problem and linear differential equations in
positive characteristic.

2003. XVII, 438 p. (Grundlehren der mathematischen Wissenschaften, Volume 328) Hardcover
€ 89,95; sFr 149,50; £ 63,00 ISBN 3-540-44228-6

For further information on the series
www.springer.de/math/series




UNIVERSITAT BASEL

Assistenzprofessur (Tenure Track)
in Analysis

Am Mathematischen Institut der Universitat Basel ist zum 1. April 2004
eine Assistenzprofessur (Tenure Track) in Analysis zu besetzen. Bewerber-
innen und Bewerber missen in Mathematik promoviert sein. Lehrtatigkeit
im Anschluss an die Promotion ist von Vorteil.

Von den Bewerberinnen und Bewerbern wird selbstandige Forschungs-
tatigkeit in Richtung Partielle Differentialgleichungen, Dynamische
Systeme, Numerische Analysis oder Angewandte Analysis erwartet. Ein
starkes Engagement flr Lehre und Forschung auf hohem Niveau wird vor-
ausgesetzt.

Die Universitat Basel strebt eine Erhohung des Anteils von Frauen unter
den Dozierenden an. Bewerbungen von Frauen sind deshalb besonders
willkommen.

Bewerbungen mit Lebenslauf, Publikationsliste, Sonderdrucken von fiunf
Arbeiten, Forschungsplan, Bericht tUber Lehrerfahrung sowie Namen und
Adressen von flinf Referenzen sind bis zum 31. Oktober 2003 zu richten an:

Prof. Dr. Marcel Tanner,

Dekan der Philosophisch-Naturwissenschaftlichen Fakultat
der Universitat Basel

Klingelbergstrasse 50

CH-4056 Basel

Schweiz

Kontaktadresse fir zuséatzliche Informationen:
Prof. D. Masser

Mathematisches Institut

Rheinsprung 21

CH-4051 Basel

Schweiz

masser@math.unibas.ch




de Gruyter 5
Studies in Mathematics
31

Elliptic Curves

A Comput Approach

The basics of the
theory of elliptic

curves should be
known to everybody, be he (or she) a mathematician
or a computer scientist. Especially everybody con-
cerned with cryprography should know the ele-

ments of this theory.

The purpose of the present textbook is to give an
clementary introduction to elliptic curves. Since this
branch of number theory is particularly accessible to
computer-assisted calculations, the authors make
use of it by approaching the theory under a compu-

tational point of view. Specifically, the computer-

B Heinz Bauer: Selecta

Edited by Herbert Heyer, Niels Jacob and

2003. xiv, 597 pages. 1 frontspiece. Hardcover.
€128~ [D] * ISBN 3-11-017350-6

Heinz Bauer (1928-2002) was one of the promi-
nent figures in Convex Analysis and Potential
Theory in the second half of the 20th century. The
Bauer minimum principle and Bauers work on
Silov’s boundary and the Dirichlet problem are
milestones in convex analysis. Axiomatic potential
theory owes him whar is known by now as Bauer

harmonic spaces.

These Selecta collect more than twenty of Bauer’s

research papers including his seminal papers in

de Gruyter

Berlin- New York

Wl
G

www.deGruyter.de -

WALTER DE GRUYTER GMBH & CO. KG -
Telefon +49-(0)30-2 60 05-0 -

Genthiner Strafle 13 -
Fax +49-(0)30-2 60 05-251

Susanne Schmitt / Horst G. Zimmer
B Elliptic Curves

A Computational Approach
2003. Approx. x, 361 pages. Hardcover.

€78, [D] ¢ ISBN 3-11-016808-1
(de Gruyter Studies in Mathematics 31)

algebra package SIMATH can be applied on several
occasions. However, the book can be read also by

those not interested in any compurations.

Of course, the theory of elliptic curves is very com-
prehensive and becomes correspondingly sophisti-
cated. That is why the authors made a choice of the
topics treated. Topics covered include the determi-
nation of torsion groups, computations regarding
the Mordell-Weil group, height calculations, S-inte-
gral points. The contents is kept as elementary as
possible. In this way it becomes obvious in which
respect the book differs from the numerous text-

books on elliptic curves nowadays available.

lvan Netuka

Convex Analysis and Potental Theory. Above his
research contributions Bauer is best known for his
art of writing survey articles. Five of his surveys on
different topics are reprinted in this volume. Among
them is the well-known article “Approximation and
Abstract Boundary”, for which he was awarded with
the Chauvenet Price by the American Mathematical

Association in 1980.
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