Diese Seite kann nicht angezeigt werden. Dies könnte durch eine falsche oder veraltete URL verursacht worden sein. Bitte prüfen Sie diese noch einmal. Es könnte auch sein, dass wir die betreffende Seite archiviert, umbenannt oder verschoben haben. Eventuell hilft Ihnen unsere Seitensuche (oben-rechts) weiter oder Sie wechseln zurück zur Startseite. Sie können uns auch das Problem direkt melden.
Während wir uns um eine Lösung Ihres Problems bemühen, könnten Sie sich ja am Folgenden versuchen. Lösungsvorschläge schicken Sie bitte an medienbuero[at]mathematik.de.
W. V. D. Hodge (1903-1975) war ein britischer Mathematiker, der fundamentale Beiträge zur Algebraischen Geometrie geleistet hat: also zum Verständnis der Lösungsmengen von Polynomgleichungen. Solche Gleichungen können viele Grundformen der Natur beschreiben, etwa Kreise, Ellipsen oder Geraden in der Ebene, Sphären, Eier und viele noch viel kompliziertere und spanndendere Figuren im Raum -- die IMAGINARY-Ausstellung aus dem Mathematikjahr 2008 zeigt das eindrucksvoll. Die Theorie solcher Figuren ist hochentwickelt, insbesondere wenn man dabei mit komplexen Zahlen rechnet, was die Theorie einfacher, aber die Vorstellung davon viel komplizierter macht. Die Hodge-Vermutung ist dabei eine technisch-schwierige, aber wichtige Frage: kann man die Unterstrukturen solcher Figuren wieder durch Polynomgleichungen beschreiben? Für niedrig-dimensionale Figuren (die wir uns vorstellen können) ist das richtig, aber die allgemeine Form der Hodge-Vermutung ist offen. Und es kann gut sein, dass Professor Hodge da nicht Recht behält.