Diese Seite kann nicht angezeigt werden. Dies könnte durch eine falsche oder veraltete URL verursacht worden sein. Bitte prüfen Sie diese noch einmal. Es könnte auch sein, dass wir die betreffende Seite archiviert, umbenannt oder verschoben haben. Eventuell hilft Ihnen unsere Seitensuche (oben-rechts) weiter oder Sie wechseln zurück zur Startseite. Sie können uns auch das Problem direkt melden.
Während wir uns um eine Lösung Ihres Problems bemühen, könnten Sie sich ja am Folgenden versuchen. Lösungsvorschläge schicken Sie bitte an medienbuero[at]mathematik.de.
1904 hat der französische Mathematiker Henri Poincaré gefragt, ob die 3-dimensionale Sphäre die einzige 3-dimensionale Raumform ist, die einfach-zusammenhängend ist, in der sich also jede geschlossene Kurve auf einen Punkt zusammenziehen lässt. Die 3-dimensionale Sphäre ist die Raumform, die man erhält, wenn man den 3-dimensionalen Raum durch einen einzigen Punkt „im Unendlichen“ abschließt. Die Poincaré-Vermutung ist ein Spezialfall einer sehr allgemeinen „Geometrisierungsvermutung“, die der Amerikaner William Thurston (1946-2012) in den 1970er Jahren aufgestellt hat — und die von 2002/2003 von dem Russen Grigori Perelman, basierend auf einem Ansatz von Richard Hamilton vollständig bewiesen wurde.