Theorema Magnum MCMLXXXIII: die Mordell-Vermutung

Fermats Vermutung sagte bekanntlich, dass xn+yn=zn für n≥3 keine nichttrivialen ganzzahligen Lösungen hat. Äquivalent soll xn+yn=1 keine rationalen Lösungen außer (0,1) und (1,0) sowie (wenn n gerade ist) (0,-1) und (-1,0) haben. Man weiß schon seit dem Altertum, dass es unendlich viele pythagoreischer Zahlentripel…

Weiterlesen ...

Hochkarätige Mathematik am Azat-Miftakhov-Tag

Morgen, am 16. Juni ist der Azat-Miftakhov-Tag. Azat Miftakhov ist ein bekannter junger Mathematiker und linker Aktivist, der von einem Moskauer Gericht wegen konstruierter Vorwürfe zu sechs Jahren Strafarbeit verurteilt worden ist. Als Zeichen der Solidarität organisiert ein Unterstützerkomitee eine online …

Weiterlesen ...

Theorema Magnum MCMLXXXII: Exotische 4-dimensionale Räume

Seit Weierstraß weiß man, dass sich jede stetige Abbildung durch Polynome und damit durch differenzierbare Abbildungen beliebig gut annähern läßt. Das überträgt sich auch auf Mannigfaltigkeiten, wo man stetige Abbildungen mittels beliebig kleiner Homotopien in differenzierbare deformieren kann. Das legt eigentlich …

Weiterlesen ...